Abstract

Review Article

Surface Plasmon Resonance technology to assess biological interactions

Silvia Bartollino*, Alessandro Medoro, Donatella Mignogna, , Erika di Zazzo and Bruno Moncharmont

Published: 25 August, 2017 | Volume 1 - Issue 1 | Pages: 039-044

Molecular interactions between proteins or between proteins and small molecules are pivotal events for selective binding of biological structures and, consequentially, for their correct function. In this scenario, the evaluation of kinetic parameters, characterizing a molecular interactions, is considered a crucial event to reveal the nature of binding processes.

The focus on peculiar forces involved in the molecular recognition represents an opportunity to explore biological interactions in real time, and to develop a number of innovative biotechnological methods for diagnosis and/or therapy.

Currently, optical biosensors, offering an increasingly effective technology to detect in real time molecular binding, are usually composed by a detector, a sensor surface and a sample delivery system: only definite substances, which are able to interact specifically with the biological part, lead to an optical or electrical signal of the physical transducer.

In this review we want to highlight the exponentially-growing interest of Surface Plasmon Resonance (SPR) based optical biosensors for molecular binding analysis in different research fields.

Read Full Article HTML DOI: 10.29328/journal.hjbm.1001005 Cite this Article Read Full Article PDF

Keywords:

SPR; Sensorgram; Ligand; Analyte; Biological interactions

References

  1. Pattnaik P, Surface Plasmon resonance: applications in understanding receptor-ligand interaction. Appl. Biochem. Biotechnol. 2005; 126: 79-92. Ref.: https://goo.gl/19DKNS
  2. Lee TH, Hirst DJ, Aguilar MI. New insights into the molecular mechanisms of biomembrane structural changes and interactions by optical biosensor technology. Biochim Biophys Acta. 2015; 1848: 1868-1885. Ref.: https://goo.gl/dNYmGq
  3. Douzi B. Protein-Protein Interactions: Surface Plasmon Resonance. Methods Mol Biol. 2017; 1615: 257-275. Ref.: https://goo.gl/XNJuYP
  4. Cooper MA, Optical biosensors in drug discovery. Nat Rev Drug Discov. 2002; 1: 515-528. Ref.: https://goo.gl/Xe1CPP
  5. Shin HJ, Lee H, Park JD, Hyun HC, Sohn HO, et al. Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins. Mol Cells. 2007; 24: 119-124. Ref.: https://goo.gl/Ftf2bb
  6. Cannon MJ, Papalia GA, Navratilova I, Fisher RJ, Roberts LR, et al. Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology, Anal Biochem. 2004; 330: 98-113. Ref.: https://goo.gl/qF14p8
  7. Fabini E, Danielson UH. Monitoring drug-serum protein interactions for early ADME prediction through Surface Plasmon Resonance technology. J Pharm Biomed Anal. 2017; 114: 188-194. Ref.: https://goo.gl/je1GRc
  8. Leonard P, Hearty S, Ma H, O’Kennedy R. Measuring Protein-Protein Interactions Using Biacore. Methods Mol Biol. 2017; 1485: 339-354. Ref.: https://goo.gl/vimT1j
  9. Nguyen HH, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors (Basel). 2015; 15: 10481-10510. Ref.: https://goo.gl/HA8ZYn
  10. Baird CL, Myszka DG. Current and emerging commercial optical biosensors. J Mol Recognit. 2001; 14: 261-268. Ref.: https://goo.gl/pCDDbj
  11. Biacore Life Sciences nd. Accessed. 2017. Ref.: https://goo.gl/uGRToc
  12. Keusgen M. Biosensors: new approaches in drug discovery. Naturwissenschaften. 2002; 89: 433-444. Ref.: https://goo.gl/UHcx9g
  13. Copeland RA. Drug-target interaction kinetics: underutilized in drug optimization? Future Med Chem. 2016; 8: 2173-2175. Ref.: https://goo.gl/yYfexS
  14. Ferlini C, Bartollino S, Cicchilliti L, Penci R, Raspaglio G, et al. 471 POSTER Functional assessment of Bcl-2 disordered loop through plasmon surface resonance technology. Eur J Cancer Suppl. 2006; 4: 144.
  15. Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, et al. Paclitaxel Directly Binds to Bcl-2 and Functionally Mimics Activity of Nur77, Cancer Res. 2009; 69: 6906-6914. Ref.: https://goo.gl/RoGG2f
  16. Jason-Moller L, Murphy M, Bruno J. Overview of Biacore Systems and Their Applications. Curr Protoc Protein Sci. 2006. Ref.: https://goo.gl/4DXqXp
  17. Rich RL, Papalia GA, Flynn PJ, Furneisen J, Quinn J, et al. Myszka, A global benchmark study using affinity-based biosensors. Anal Biochem. 2009; 386: 194-216. Ref.: https://goo.gl/A5onva
  18. Ligand immobilization using thiol-disulphide exchange. (n.d.). Accessed. 2017. Ref.: https://goo.gl/9sydnU
  19. Livnat Levanon N, Vigonsky E, Lewinson O. Real time measurements of membrane protein:receptor interactions using Surface Plasmon Resonance (SPR). J Vis Exp. 2014. Ref.: https://goo.gl/diZfAw
  20. Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques. 1991; 11: 620-627. Ref.: https://goo.gl/aAhdYp
  21. Johnsson B, Löfås S, Lindquist G. Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem. 1991; 198: 268-277. Ref.: https://goo.gl/q9JMrA
  22. Peterson AW, Halter M, Plant AL, Elliott JT. Surface plasmon resonance microscopy: Achieving a Quantitative optical response. Rev Sci Instrum. 2016; 87: 93703. Ref.: https://goo.gl/eT36G2
  23. Wilson WD. Tech Sight. Analyzing biomolecular interactions. Science. 2002; 295: 2103-2105. Ref.: https://goo.gl/6wN8hm
  24. Buijs J, Franklin GC. SPR-MS in functional proteomics. Brief. Funct. Genomic. Proteomic. 2005; 4: 39-47. Ref.: https://goo.gl/vxQMLW
  25. Nedelkov D, Nelson RW. Analysis of native proteins from biological fluids by biomolecular interaction analysis mass spectrometry (BIA/MS): exploring the limit of detection, identification of non-specific binding and detection of multi-protein complexes. Biosens Bioelectron. 2001; 16: 1071-1078. Ref.: https://goo.gl/cPwUs3
  26. Geitmann M, Danielson UH. Studies of substrate-induced conformational changes in human cytomegalovirus protease using optical biosensor technology. Anal Biochem. 2004; 332: 203-214. Ref.: https://goo.gl/YBYbDD
  27. Fabini E, Zambelli B, Mazzei L, Ciurli S, Bertucci C, Surface plasmon resonance and isothermal titration calorimetry to monitor the Ni(II)-dependent binding of Helicobacter pylori NikR to DNA. Anal Bioanal Chem. 2016; 408: 7971-7980. Ref.: https://goo.gl/k6sVxp
  28. Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S. Development of surface plasmon Resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem. 2012; 403: 2843-2850. Ref.: https://goo.gl/dhUWVy
  29. HIGHLIGHTS OF PRESCRIBING INFORMATION. @BULLET Indic. Usage Color Cancer. 2009. Ref.: https://goo.gl/jfyGMu
  30. O’Riordan N, Kilcoyne M, Joshi L, Hickey R. Exploitation of SPR to Investigate the Importance of Glycan Chains in the Interaction between Lactoferrin and Bacteria. Sensors. 2017; 17: 1515. Ref.: https://goo.gl/2v8cbd
  31. Camperchioli A, Mariani M, Bartollino S, Petrella L, Persico M, et al. Fattorusso, Investigation of the Bcl-2 multimerisation process: Structural and functional implications, Biochim. Biophys. Acta-Mol Cell Res. 2011; 1813: 850-857. Ref.: https://goo.gl/CVwRu5
  32. Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, et al. Paclitaxel Directly Binds to Bcl-2 and Functionally Mimics Activity of Nur77. Cancer Res. 2009; 69: 6906-6914. Ref.: https://goo.gl/QUXySo
  33. Agadjanyan MG, Zagorski K, Petrushina I, Davtyan H, Kazarian K, et al. Humanized monoclonal antibody armanezumab specific to Nterminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener. 2017; 12: 33. Ref.: https://goo.gl/FFybbR
  34. Cairns TM, Ditto NT, Lou H, Brooks BD, Atanasiu D, Eisenberg RJ, et al. Global sensing of the antigenic structure of herpes simplex virus gD using high-throughput array-based SPR imaging. PLoS Pathog. 2017; 13. Ref.: https://goo.gl/YfrPhU
  35. Zhukov A, Schürenberg M, Jansson O, Areskoug D, Buijs J. Integration of surface plasmon resonance with mass spectrometry: automated ligand fishing and sample preparation for MALDI MS using a Biacore 3000 biosensor. J Biomol Tech. 2004; 15: 112-119. Ref.: https://goo.gl/NRB7Yz
  36. Townsend S, Finlay WJJ, Hearty S, O’Kennedy R. Optimizing recombinant antibody function in SPR immunosensing. The influence of antibody structural format and chip surface chemistry on assay sensitivity. Biosens Bioelectron. 2006; 22: 268-274. Ref.: https://goo.gl/mG1Dxs
  37. Zhang XL, Liu Y, Fan T, Hu N, Yang Z, et al. Design and Performance of a Portable and Multichannel SPR Device. Sensors (Basel). 2017; 17: 1435. Ref.: https://goo.gl/CpHR5M

Figures:

Figure 1

Figure 1

Similar Articles

  • Surface Plasmon Resonance technology to assess biological interactions
    Silvia Bartollino*, Alessandro Medoro, Donatella Mignogna, , Erika di Zazzo and Bruno Moncharmont Silvia Bartollino*,Alessandro Medoro,Donatella Mignogna,,Erika di Zazzo,Bruno Moncharmont. Surface Plasmon Resonance technology to assess biological interactions . . 2017 doi: 10.29328/journal.hjbm.1001005; 1: 039-044

Recently Viewed

  • Difference between conventional and modern methods for examination of fingerprints
    Ambati Ramesh Babu* Ambati Ramesh Babu*. Difference between conventional and modern methods for examination of fingerprints. J Forensic Sci Res. 2021: doi: 10.29328/journal.jfsr.1001025; 5: 037-040
  • Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia
    Zenebe W*, Daniel T and Weyessa G Zenebe W*,Daniel T,Weyessa G. Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia. J Plant Sci Phytopathol. 2021: doi: 10.29328/journal.jpsp.1001054; 5: 004-013
  • Statistical Mathematical Analysis of COVID-19 at World Level
    Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda and Zambrano-Cabanillas Abel Walter Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda, Zambrano-Cabanillas Abel Walter. Statistical Mathematical Analysis of COVID-19 at World Level. Int J Phys Res Appl. 2024: doi: 10.29328/journal.ijpra.1001082; 7: 040-047
  • Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats
    Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji and Victor Abulude and Funmilayo Elizabeth Olaleye Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji, Victor Abulude and Funmilayo Elizabeth Olaleye. Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats. J Cardiol Cardiovasc Med. 2024: doi: 10.29328/journal.jccm.1001177; 9: 044-051
  • Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria
    Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira and Rafaelle Cavalcante Lira Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira, Rafaelle Cavalcante Lira. Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria. Arch Pharm Pharma Sci. 2024: doi: 10.29328/journal.apps.1001053; 8: 024-028.

Read More

Most Viewed

Read More

Help ?