Abstract

Short Review

Endothelial Repair and Endothelial Cell-Derived Secretome

Alexander E. Berezin*

Published: 09 January, 2017 | Volume 1 - Issue 1 | Pages: 001-008

Growing evidence supports the hypothesis that endothelial cell-derived microparticles (MPs) might contribute to the pathogenesis of cardiovascular (CV) disease. Endothelial cell-derived MPs play a pivotal role in the regulation of the endogenous repair system, thrombosis, coagulation, inflammation, immunity and metabolic memory phenomenon. There is evidence that the MPs are secreted actively accompanied to other regulatory molecules. All these actively synthetizing and secreting factors include proteins, adhesion and intercellular signal molecules, peptides, lipids, free DNAs, microRNAs, and even microparticles (MPs) are defined as cellular secretome. The proteomic profile of secretome is under tightly control of genetic and epigenetic mechanisms, which may altered a secretion of the proteins involved into MPs’ organization. Finally, this may contribute the modification of MP’s after their secretion and throughout transfer to the target cells. As a result, communicative ability of endothelial cell-derived MPs may sufficiently worse. Subsequently, cross talk between some components of secretome might modulate delivering cargos of MPs and their regenerative and proliferative capabilities via intercellular signaling networks. The aim of the review is to discuss the effect of various components of secretome on MP-dependent effects on endothelium.

Read Full Article HTML DOI: 0.29328/journal.hjbm.1001001 Cite this Article Read Full Article PDF

Keywords:

Endothelium; Endothelial cells; Secretome; Reparation; Microparticles

References

  1. Thulin A, Christersson C, Alfredsson J, Siegbahn A. Circulating cell-derived microparticles as biomarkers in cardiovascular disease. Biomark Med. 2016; 10: 1009-1022. Ref.: https://goo.gl/nLzZme
  2. Berezin AE, Kremzer AA, Martovitskaya YV, Berezina TA, Gromenko EA. Pattern of endothelial progenitor cells and apoptotic endothelial cell-derived microparticles in chronic heart failure patients with preserved and reduced left ventricular ejection fraction. EBioMedicine. 2016; 4: 86-94. Ref.: https://goo.gl/MIhKnC
  3. Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. Pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: Relevance to neurohumoral and inflammatory activation. BBA Clin. 2015; 4: 69-75. Ref.: https://goo.gl/6GRMvL
  4. Berezin AE, Kremzer AA, Cammarota G, Zulli A, Petrovic D, et al. Circulating endothelial-derived apoptotic microparticles and insulin resistance in non-diabetic patients with chronic heart failure. Clin Chem Lab Med. 2016; 54: 1259-1267. Ref.: https://goo.gl/b2LNxx
  5. Berezin AE, Kremzer AA, Berezina TA, Martovitskaya Yu V. The pattern of circulating microparticles in patients with diabetes mellitus with asymptomatic atherosclerosis. Acta Clinica Belgica: International Journal of Clinical and Laboratory Medicine. 2016. Ref.: https://goo.gl/crs4fH
  6. Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA, et al. The utility of biomarker risk prediction score in patients with chronic heart failure. Int J Clin Exp Med. 2015; 8: 18255-18264. Ref.: https://goo.gl/WiiK28
  7. Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA. The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin. 2014; 3:18-24. Ref.: https://goo.gl/c6ynVA
  8. Berezin AE. Impaired Phenotype of Circulating Endothelial-Derived Microparticles: Novel Marker of Cardiovascular Risk. Journal of Cardiology and Therapy. 2015; 2: 273-278 doi:10.17554/j.issn.2309-6861.2015.02.77. Ref.: https://goo.gl/J6iAPl
  9. Beer L, Mildner M, Gyöngyösi M, Ankersmit HJ. Peripheral blood mononuclear cell secretome for tissue repair. Apoptosis. 2016; 21:1336-1353. Ref.: https://goo.gl/MYrLue
  10. Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P. Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem. 2015; 48:562-568. Ref.: https://goo.gl/IgVo6k
  11. Amabile N, Gurin AP, Leroyer A, Mallat Z, Nguyen C. et al. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol. 2005; 16: 3381-3388. Ref.: https://goo.gl/Nd5YhR
  12. Pirro M, Schillaci G, Bagaglia F, Menecali C, Paltriccia R. et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis. 2008; 197: 757-767. Ref.: https://goo.gl/HPnQvy
  13. Yue WS, Lau KK, Siu CW, Wang M, Yan GH, et al. Impact of glycemic control on circulating endothelial progenitor cells and arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2011; 10: 113. Ref.: https://goo.gl/vHthAr
  14. Berezin A. The Clinical Utility of Circulating Microparticles’ Measurement in Heart Failure Patients. J Vasc Med Surg. 2016; 4: 275-284.
  15. Berezin A. “Impaired immune phenotype" of endothelial cell-derived microparticles: the missed link between diabetes-related states and cardiovascular complications? Journal of Data Mining in Genomics & Proteomics. 2016; 7: 195-197.
  16. Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K. et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol. 2009; 54: 601-608 Ref.: https://goo.gl/KkvAke
  17. Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A. et al. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics. 2016; 133: 100-112. Ref.: https://goo.gl/xdRqIX
  18. Reus TL, Robert AW, Da Costa MB, de Aguiar AM, Stimamiglio MA. Secretome from resident cardiac stromal cells stimulates proliferation, cardiomyogenesis and angiogenesis of progenitor cells. Int J Cardiol. 2016; 221: 396-403. Ref.: https://goo.gl/ZyQO5N
  19. Khanabdali R, Rosdah AA, Dusting GJ, Lim SY. Harnessing the secretome of cardiac stem cells as therapy for ischemic heart disease. Biochem Pharmacol. 2016; 113: 1-11. Ref.: https://goo.gl/N0GiRU
  20. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010; 73: 1907-1920. Ref.: https://goo.gl/dtUus1
  21. Zullo JA, Nadel EP, Rabadi MM, Baskind MJ, Rajdev MA. et al. The Secretome of Hydrogel-Coembedded Endothelial Progenitor Cells and Mesenchymal Stem Cells Instructs Macrophage Polarization in Endotoxemia. Stem Cells Transl Med. 2015; 4: 852-861. Ref.: https://goo.gl/97GvPr
  22. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19-30. Ref.: https://goo.gl/OivXpu
  23. Ullal AJ, Pisetsky DS, Reich C. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010;77:294-301.Ref.: https://goo.gl/UT9fqB
  24. Berezin AE. Metabolomics in Heart Failure Patients: Hype and Hope. Biomarkers J. 2016; 2: 21-23.Ref.: https://goo.gl/jfI10Y
  25. Berezin AE, Mokhnach RE. The promises, methodological discrepancies and pitfalls in measurement of cell-derived extracellular vesicles in diseases. J Biotechnol Biomater, 2016; 6: 232-239. Ref.: https://goo.gl/PTIZHq
  26. Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006; 20: 1-26. Ref.: https://goo.gl/Ni9d9i
  27. Reich C, Pisetsky DS. The content of DNA and RNA in microparticles released by Jurkat and HL-60 cells undergoing in vitro apoptosis. Exp Cell Res. 2009; 315: 760-768. Ref.: https://goo.gl/vDbbsC
  28. Horstman LL, Jy W, Jimenez JJ, Ahn YS. Endothelial microparticles as markers of endothelial dysfunction. Front Biosci. 2004; 9: 1118-1135. Ref.: https://goo.gl/kcI20p
  29. Mayr M, Grainger D, Mayr U, Leroyer AS, Leseche G, et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques. Circ Cardiovasc Genet. 2009; 2: 379-388. Ref.: https://goo.gl/kau7sG
  30. Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010; 107: 1047-1057. Ref.: https://goo.gl/vQ0S8M
  31. Helmke A, von Vietinghoff S. Extracellular vesicles as mediators of vascular inflammation in kidney disease. World J Nephrol. 2016; 5: 125-138. Ref.: https://goo.gl/zDxsRC
  32. Lu Y, Li L, Yan H, Su Q, Huang J, et al. Endothelial microparticles exert differential effects on functions of Th1 in patients with acute coronary syndrome. Int J Cardiol. 2013; 168: 5396-5404. Ref.: https://goo.gl/I8MoUh
  33. Scanu A, Molnarfi N, Brandt KJ, Gruaz L, Dayer JM, et al. Stimulated T cells generate microparticles, which mimic cellular contact activation of human monocytes: differential regulation of pro- and anti-inflammatory cytokine production by high-density lipoproteins. J Leukoc Biol. 2008; 83: 921-927. Ref.: https://goo.gl/O20y6w
  34. Zhang Q, Shang M, Zhang M, Wang Y, Chen Y, et al. Microvesicles derived from hypoxia/reoxygenation-treated human umbilical vein endothelial cells promote apoptosis and oxidative stress in H9c2 cardiomyocytes. BMC Cell Biol. 2016 Jun 23; 17: 25. Ref.: https://goo.gl/9QR2zH
  35. Nomura S, Tandon NN, Nakamura T, Cone J, Fukuhara S, et al. High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis. 2001; 158: 277-287. Ref.: https://goo.gl/5vOzDc
  36. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001; 104: 2649-2652. Ref.: https://goo.gl/lVNu40
  37. Song JQ, Teng X, Cai Y, Tang CS, Qi YF. Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis. 2009; 14: 1299-1307. Ref.: https://goo.gl/UCtlqw
  38. Eckers A, Haendeler J. Endothelial cells in health and disease. Antioxid Redox Signal. 2015; 22: 1209-1211. Ref.: https://goo.gl/rLWmZw
  39. Mukherjee P, Mani S. Methodologies to decipher the cell secretome. Biochim Biophys Acta. 2013; 1834: 2226-2232. Ref.: https://goo.gl/WtxQ61
  40. Ankersmit HJ, Hoetzenecker K, Dietl W, Soleiman A, Horvat R. et al. Irradiated cultured apoptotic peripheral blood mononuclear cells regenerate infarcted myocardium. Eur J Clin Invest. 2009; 39: 445-456. Ref.: https://goo.gl/pk12y5
  41. Makridakis M, Roubelakis MG, Vlahou A. Stem cells: insights into the secretome. Biochim Biophys Acta. 2013; 1834: 2380-2384. Ref.: https://goo.gl/BCpmkN
  42. Lichtenauer M, Mildner M, Hoetzenecker K, Zimmermann M, Podesser BK, et al. Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Res Cardiol. 2011; 106: 1283-1297. Ref.: https://goo.gl/08Lw4W
  43. Lichtenauer M, Mildner M, Baumgartner A, Hasun M, Werba G, et al. Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction. Basic Res Cardiol. 2011; 106: 645-655. Ref.: https://goo.gl/Vrqa9q
  44. Lichtenauer M, Mildner M, Werba G, Beer L, Hoetzenecker K, et al. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction. PLoS One. 2012; 7: 52101. Ref.: https://goo.gl/pcj7BP
  45. Hill J, Zalos G, Halcox J, Schenke W, Waclawiw M, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348: 593-600. Ref.: https://goo.gl/wEj0Nx
  46. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012; 1820: 940-948. Ref.: https://goo.gl/1JNAcJ
  47. Ankrum JA, Miranda OR, Ng KS, Sarkar D, Xu C, K, et al. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat Protoc. 2014; 9: 233-245. Ref.: https://goo.gl/7L3hES
  48. Le Bihan MC, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, et al. In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics. 2012; 77: 344-356. Ref.: https://goo.gl/E0zXyc
  49. Berezin A. Endothelial progenitor cells dysfunction and impaired tissue reparation: the missed link in diabetes mellitus development. Diabetes & Metabolic Syndrome. 2016. Ref.: https://goo.gl/IqBAiJ
  50. Berezin A. Bone-Related Proteins as Markers in Vascular Remodeling In: V.R. Preedy (ed.), Biomarkers in Bone Disease: Methods, Discoveries and Applications, Switzerland, Springer, 2016; 1-22. Ref.: https://goo.gl/fXR50H
  51. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012; 10: 244-258. Ref.: https://goo.gl/PKZtpO

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More