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Abstract 

Microbiome-gut-brain axis represents a complex, bidirectional communication network 
connecting the gastrointestinal tract and its microbial populations with the central nervous 
system (CNS). This complex system is important for maintaining physiological homeostasis and 
has signiϐicant implications for mental health. The human gut has trillions of microorganisms, 
collectively termed gut microbiota, which play important roles in digestion, immune function, and 
production of various metabolites. Some current research shows that these microorganisms strongly 
inϐluence the brain function and behaviour of individuals, forming the basis of the microbiome-gut-
brain axis. The communication between gut microbiota and the brain occurs via multiple pathways: 
neural pathway (e.g., vagus nerve), endocrine pathway (e.g., hormone production), immune pathway 
(e.g., inϐlammation modulation), and metabolic pathway (e.g., production of short-chain fatty acids). 
Dysbiosis, or imbalance of gut microbiota, has been linked to mental health disorders such as 
anxiety, depression, multiple sclerosis, autism spectrum disorders, etc, offering new perspectives on 
their etiology and potential therapeutic interventions. Artiϐicial Intelligence (AI) has emerged as a 
powerful tool in interpreting the complexities of the microbiome-gut-brain axis. AI techniques, such 
as machine learning and deep learning, enable the integration and analysis of large, multifaceted 
datasets, uncovering patterns and correlations that can be avoided by traditional methods. These 
techniques enable predictive modeling, biomarker discovery, and understanding of underlying 
biological mechanisms, enhancing research efϐiciency and covering ways for personalized 
therapeutic approaches. The application of AI in microbiome research has provided valuable insights 
into mental health conditions. AI models have identiϐied speciϐic gut bacteria linked to disease, 
offered predictive models, and discovered distinct microbiome signatures associated with speciϐic 
diseases. Integrating AI with microbiome research holds promise for revolutionizing mental health 
care, offering new diagnostic tools and targeted therapies. Challenges remain, but the potential 
beneϐits of AI-driven insights into microbiome-gut-brain interactions are immense and offer hope 
for innovative treatments and preventative measures to improve mental health outcomes.

Introduction
Overview of microbiome-gut-brain axis and its 
signifi cance in mental health

Microbiomes-gut-brain axis is a bidirectional and dynamic 
communication network that links the gastrointestinal tract 
and its microbial community/ populations with the central 
nervous system (CNS). This complex system is important 
for maintaining homeostasis and has been increasingly 
recognized for its signiϐicant inϐluence on mental health [1-3].

The microbiomes-gut-brain axis: The human gut is a 
home/host of trillions of microorganisms, collectively known 
as the gut microbiota of individuals. These microorganisms 
play important for various physiological processes including 
digestion, immune function, and the production of various 
metabolites. Recent research has highlighted the signiϐicant 
impact of these gut microbiota on brain function and 
behaviour, thereby forming the microbiome-gut-brain axis. 

This axis facilitates complex communication between the gut 
and brain through multiple interconnected pathways [3].

Communication pathways: The communication between 
gut microbiota and brain occurs through multiple pathways, 
each contributing to the overall function of the microbiome-
gut-brain axis (Figure 1):

Neural pathways: The Vagus nerve, which connects the 
gut to the brain, is a primary route for transmitting signals 
transmission. Gut bacteria can inϐluence the vagus nerve, 
thereby affecting brain activity and behavior. This neural 
pathway enables rapid and direct communication between 
the gut and the CNS [4,5].

Endocrine pathways: Gut microbiota can modulate the 
production of hormones such as cortisol, which is involved in 
stress response and mood regulation. By inϐluencing hormone 
levels, gut microbiota can impact emotional and psychological 
states [6].

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.ibm.1001027&domain=pdf&date_stamp=2024-06-28
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Immune pathways: Gut microbiota interacts with the 
immune system, inϐluencing the inϐlammation process and 
immune responses that can affect brain health. Chronic 
inϐlammation and immune dysregulation are linked to various 
mental health disorders, emphasizing the importance of this 
pathway [7,8].

Metabolic pathways: Gut bacteria produce metabolites, 
such as short-chain fatty acid (SCFA), which can able to 
cross the blood-brain barrier and inϐluence brain functions. 
These metabolites play a role in modulating neural activity 
and neuroinϐlammation, contributing to overall brain health 
[9,10].

Signi icance in mental health: The microbiome-gut-brain 
axis has deep associations with mental health. Dysbiosis, or 
imbalances of gut microbiota, has been associated with various 
mental health disorders, such as anxiety, depression, multiple 
sclerosis, and autism spectrum disorder. Understanding 
the microbiomes-gut-brain axis mechanism offers new 
perspectives on the etiology of these conditions and opens up 
potential avenues for therapeutic interventions [11].

The signiϐicance of the microbiomes-gut-brain axis in 
mental health is multifaceted. For example, alterations in gut 
microbiota composition can lead to changes in the production 
of neurotransmitters and other neuroactive compounds, 
thereby affecting mood and behavior. Moreover, modulation 
of gut microbiota through diet, probiotics, or prebiotics holds 
promise for developing novel treatments for mental health 
disorders [11].

Advances in Artiϐicial Intelligence (AI) are enhancing 
our understanding of this complex multifaceted system. 

AI algorithms can analyze microbiome datasets to identify 
patterns/signatures, and predict outcomes, thus helping 
in deeper insights into the microbiome-gut-brain axis. AI 
is a main ϐield, that encompasses both ML and DL. ML uses 
algorithms to learn from data and make predictions while DL 
a subset of ML uses neural networks with multiple layers to 
analyze large and complex datasets. These technologies help 
us in the identiϐication of complex patterns and relationships 
within microbiome data, enhancing our understanding of its 
impact on brain health. By using AI, researchers can uncover 
novel biomarkers and therapeutic targets, paving the way for 
innovative treatments and preventative measures for mental 
health disorders, potentially revolutionizing mental health 
care [12].

Importance of AI in understanding the microbiome-
gut-brain axis

Microbiome-gut-brain axis is a dynamic and complex 
system, involving complex interactions between gut 
microbiota and the brain. Understanding these interactions 
is crucial for advancing our knowledge of mental health. 
AI technologies have transformed many ϐields, and their 
application in microbiome research is particularly signiϐicant 
[11]. Here’s how AI contributes to understanding the complex 
interactions between gut microbiota and the brain (Figure 2).

Data integration and analysis: The microbiome-gut-
brain axis involves vast and multifaceted data, including 
genetic, metabolic, and neuroimaging information. AI 
algorithms, such as machine learning and deep learning, can 
integrate and analyze these diverse datasets. They identify 
patterns and correlations that are beyond human analytical 
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Figure 1: Communication Pathways in the Microbiome-Gut-Brain Axis.
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instance, AI might uncover how certain gut bacteria produce 
neurotransmitters like serotonin, which play a critical role in 
mood regulation [18,19].

Enhancing research ef iciency: Research methods have 
traditionally been time-consuming and limited in terms 
of scope. However, with the introduction of AI, research 
processes have been signiϐicantly accelerated. AI plays an 
important role in automating data analysis and generating 
hypotheses for further exploration. This automation allows 
for a substantial increase in efϐiciency and enables more rapid 
advancements in understanding the microbiome-gut-brain 
axis. For example, AI-driven analysis can quickly identify 
promising research avenues that human researchers might 
overlook, thereby expediting the discovery process [20,21].

AI plays an important role in deciphering complex 
interactions between gut microbiota and the brain. By 
integrating and analyzing vast amounts of data, predicting 
outcomes, discovering biomarkers, and understanding 
underlying mechanisms, AI provides valuable insights that are 
essential for advancing mental health research. The application 
of AI in this ϐield not only enhances our understanding but also 
opens up new avenues for innovative therapeutic strategies.

AI techniques in microbiome-gut-brain research

Advancements in Artiϐicial Intelligence (AI), particularly 
in Machine Learning (ML) and Deep Learning (DL), have 
signiϐicantly enhanced our ability to analyze and interpret 
complex microbiome data. These techniques provide powerful 
tools for understanding the microbiome-gut-brain axis, 
offering deeper insights into its inϐluence on mental health.

Machine Learning (ML) in microbiome research: 
Machine Learning involves algorithms that can learn from 
data and make predictions based on given data. In microbiome 
research, ML plays an important role in several key areas [22] 
(Figures 3,4). 

Data classi ication and clustering: One important 
application is data classiϐication and clustering. ML Algorithms 
such as k-means clustering and support vector machines 
(SVM), etc, are used to classify and cluster microbiome data, 
allowing researchers to categorize different types of gut 
bacteria and also help in identifying patterns associated with 

capabilities, revealing new insights into how gut microbiota 
inϐluence brain function and behavior [13].

Predictive modeling: Understanding the link between 
changes in gut microbiota and mental health outcomes is 
a challenging task due to the high variability and dynamic 
nature of microbiome compositions. AI-based predictive 
modeling can simulate various scenarios to help researchers 
understand the potential outcomes of microbiota changes. 
These predictive models can forecast responses to 
interventions such as dietary modiϐications, probiotics, 
and other treatments, thus facilitating the development of 
personalized medicine approaches customized to individual 
patients [14]. For instance, predictive models might suggest 
how speciϐic probiotic strains could alleviate depressive 
symptoms in certain individuals [15].

Biomarker discovery: Identifying speciϐic biomarkers 
that establish a connection between gut microbiota and 
mental health conditions presents a signiϐicant challenge due 
to the complex and personalized nature of these interactions. 
AI techniques can efϐiciently sift through large datasets to 
discover biomarkers associated with speciϐic mental health 
conditions. This is because different individuals may have 
unique interactions between their gut microbiota and mental 
health, making it challenging to identify universal biomarkers. 
These biomarkers can serve as diagnostic tools or targets for 
new therapies. For example, AI might identify a particular 
bacterial metabolite that is consistently low in individuals 
with anxiety, suggesting it as a potential therapeutic target 
[16,17].

Understanding mechanisms: It is well-established that 
gut microbiota has a signiϐicant impact on brain function, but the 
speciϐic biological mechanisms through which gut microbiota 
affect brain function are not fully understood. Using advanced 
analytical techniques such as genetic sequencing, proteomic 
analysis, and metabolomic proϐiling, researchers can use AI to 
gain deeper analysis into how gut microbiota inϐluences brain 
function. AI can help uncover complex details such as speciϐic 
neuroactive compounds produced by gut bacteria, their role 
in modulating immune responses, and their interactions with 
the nervous system. This multifaceted approach holds great 
promise for advancing our understanding of the complex 
relationship between gut microbiota and brain function. For 

Importance of AI in Understanding the 
Microbiome-Gut-Brain Axis

Data Integration and 
Analysis Predictive Modeling Biomarker Discovery Understanding 

Mechanisms
Enhancing Research 

Efficiency

Figure 2: Importance of AI in Understanding Microbiome-Gut-Brain Axis.
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various mental health conditions. This classiϐication helps in 
understanding how speciϐic bacterial communities correlate 
with different health and disease states, providing a clearer 
picture of the relationship between microbiome and overall 
well-being [23].

Predictive modeling: ML algorithm models, such as 
random forests and gradient-boosting machines, etc, utilize 
complex algorithms to analyze and interpret microbiome 
proϐiles. These models are capable of making predictions 
regarding various outcomes based on microbiome proϐiles, 
for instance, these models can predict the likelihood of 
developing mental health disorders based on the composition 
of an individual gut microbiota. This predictive capability 
is incredibly valuable as it enables the development of 
customized and personalized treatment plans, as well as early 
intervention strategies, enabling more targeted and effective 
mental health care [24].

Feature selection: In the ϐield of data analysis, various 
advanced techniques like LASSO (Least Absolute Shrinkage 
and Selection Operator) [25] and principal component 
analysis (PCA) [26] are used to identify key features within 
large datasets. By utilizing these methods, researchers can 
identify the most important variables, allowing them to focus 
on speciϐic bacterial strains and metabolic pathways that have 
signiϐicant relevance to mental health. This targeted approach 
enhances the efϐiciency and effectiveness of microbiome 

research, guiding scientists toward the most promising areas 
of investigation [27].

Deep Learning (DL) in microbiome research: Deep 
Learning, a subset of ML, uses neural networks with multiple 
layers to process complex datasets. Its application in 
microbiome research has been transformative [27] (Figure 5). 

Pattern recognition: One of the important applications of 
DL is in pattern recognition· Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) are advanced 
machine learning techniques that are capable of recognizing 
complex patterns within microbiome data, which may not be 
easily detectable using traditional methods. By using these 
powerful neural networks, researchers can recognize subtle 
associations between gut bacteria and brain function or 
behaviour, leading to a more nuanced understanding of the 
microbiome-gut-brain axis [28,29].

Handling high-dimensional data: Utilizing deep learning 
models, which excel at handling high-dimensional data, 
particularly those generated by multi-omics methodologies 
including genomics, metabolomics, and proteomics, offers 
numerous advantages. With the capability of these models to 
manage and analyze large and complex datasets involved in 
microbiome research, integrating various types of biological 
data for a comprehensive analysis of the microbiome’s impact 
on the brain. This holistic view is essential for understanding 
the multifaceted nature of the microbiome-gut-brain axis and 
its role in mental health [28,29].

AI techniques in Microbiome-Gut-Brain Research

Machine Learning (ML) in Microbiome Research
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Figure 3: Exploring AI Techniques in Microbiome-Gut-Brain Axis Research.

ML is applied in 
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Figure 4: Overview of Machine Learning (ML) in Microbiome Research.
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Generating hypotheses and insights: Autoencoders and 
generative adversarial networks (GANs) are cutting-edge 
technologies that analyze data to generate new hypotheses 
and valuable insights [31]. These models learn from existing 
data and create simulations, these advanced techniques 
can unlock previously unseen patterns and relationships. 
This can be particularly beneϐicial in the ϐield of biomedical 
research, where it can lead to the identiϐication of novel 
biomarkers or therapeutic targets through unprecedented 
exploration of complex datasets. The ability to uncover these 
insights from data in ways that were previously impossible 
has the potential to open up novel avenues for research 
and treatment of any medical condition. By generating 
hypotheses and understanding, DL models contribute to a 
deeper understanding of complex interactions between gut 
microbiota and brain health [30].

Machine Learning and Deep Learning techniques are 
revolutionizing microbiome-gut-brain research. By enabling 
advanced data analysis, these AI methods are uncovering 
complex interactions between gut microbiota and brain 
health, leading to new diagnostic and therapeutic possibilities. 
Their application continues to enhance our understanding of 
the microbiome-gut-brain axis, covering ways for innovative 
approaches to mental health care conditions.

Types of AI algorithms used in microbiome research

The integration of Artiϐicial Intelligence (AI) into 
microbiome-gut-brain research has signiϐicantly advanced 
our understanding of the intricate interactions within this 
axis. AI algorithms offer unique strengths in processing, 
classifying, and predicting biological patterns and outcomes, 
making them invaluable tools in this ϐield. Here, we explore 
the application and advantages of various AI algorithms used 
in microbiome research (Figure 6).

Random Forest (RF): Random Forests is a powerful 
collective learning method that works by creating a multitude 
of decision trees and then merging their results to produce 
an enhanced and more reliable prediction. This method is 
particularly beneϐicial in the ϐield of microbiome research, 
where it can be utilized to effectively classify various microbial 
communities and predict mental health outcomes, based on 
the compositions of gut microbiota. The main strength of 

Random Forest is the ability to handle high-dimensional data 
efϐiciently. Additionally, it can provide estimates of feature 
importance, which are invaluable for identifying important 
microbial species associated with speciϐic individual health 
conditions [32,33].

Support Vector Machines (SVM): SVM, which stands for 
Support Vector Machines, is a supervised learning algorithm 
commonly used for classiϐication and regression-related 
works. It works by ϐinding an optimal hyperplane that can 
greatest separate different classes of datasets with maximum 
margin. In microbiome analysis, where SVMS can be used to 
classify different types of bacteria associated with different 
mental health states and predict the presence of mental health 
disorders based on microbiome proϐiles. The strengths of SVM 
lie in its effectiveness in high-dimensional spaces, making 
it especially useful for tasks involving complex and multi-
dimensional data. Furthermore, SVM is also known to perform 
well even with small to medium-sized datasets, making it a 
versatile tool for various applications [34,35].

K-mean clustering: K-means clustering is an unsupervised 
learning algorithm that aims to separate a set of data into K 
cluster groups based on feature similarity. This algorithm is 
commonly used to group similar microbiome proϐiles, which 
can help identify common microbial patterns in individuals 
with similar mental health conditions. K-means clustering 
is simple to implement and highly efϐicient, especially when 
dealing with large complex datasets, making it ideal for 
exploratory data analysis tasks where the goal is to gain 
insights from data and identify patterns or groupings [36,37].

Convolutional Neural Networks (CNN): Neural 
networks known as convolutional neural networks (CNNs) 
are the type of deep learning model that is highly effective in 
processing data structures that are in grid-like form, making 
them particularly well-suited for tasks involving images 
and spatial data. These specialized computer algorithms, 
known as convolutional neural networks, are created to 
adaptively learn and understand patterns in data without 
human interference. In microbiome research, CNNs can be 
used to study spatial relationships and visual patterns within 
microbiome composition data. They excel at capturing local 
patterns and hierarchical structures, making them suitable for 
high-resolution microbiome data [38,39].

DL is applied in microbiome 
research

Neural Networks for Pattern 
Recognition Handling High-Dimensional Data Generating Hypotheses and 

Insights

Figure 5: Overview of Deep Learning (DL) in Microbiome Research.
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Recurrent Neural Networks (RNN): Recurrent Neural 
Networks (RNNs) are a type of artiϐicial neural network 
designed for sequential data processing steps. Unlike 
other traditional feedforward neural networks, RNNs have 
connections that can form directed cycles, enabling them 
to retain and utilize information from previous inputs. This 
memory capability makes RNNs particularly effective for 
tasks involving sequential data, such as natural language 
processing, time series analysis, and speech recognition. 
RNN ϐinds applications in analyzing time-series microbiome 
data to understand how microbial compositions change over 
time and their temporal/ sequential relationship with mental 
health states. They are effective for the temporal/ sequential 
aspect of the dataset, RNNs can capture complex temporal 
dependencies and patterns in dynamic systems, making them 
ideal for longitudinal studies in microbiome research [40,41].

Gradient Boosting Machines (GBM): Gradient Boosting 
Machine (GBM) is an ensemble learning technique that 
builds models in a stage-wise fashion and generalizes them 
by optimizing a random differentiable loss function. It works 
by adding predictors to a collective in sequence, where each 
one corrects its predecessor. This allows the model to focus 
more on instances that were previously misclassiϐied. GBM 
can be effectively used for predictive modeling in microbiome 
research, such as predicting disease outcomes based on 
microbiome features by analyzing the microbial composition 
and its potential impact on human health. GBM offers high 
predictive accuracy and ϐlexibility, capable of handling a mix 
of different types of data including categorical and numerical 
features, which is essential for the heterogeneous nature of 
microbiome data [42].

Autoencoders: Autoencoders are a type of neural 
network used in unsupervised learning to learn effective 

representations of input datasets. They have a network that 
encodes input data into a hidden space and a network that 
decodes this hidden space representation to reconstruct 
input data. Autoencoders are typically used for tasks such 
as dimensionality reduction, feature learning, and data 
denoising. In microbiome data analysis, autoencoders can 
compress high-dimensional microbiome data, identifying key 
patterns, features, and underlying structures that are relevant 
to mental health. Autoencoders are capable of unsupervised 
learning, allowing them to learn representations of input data 
without requiring explicit labels. Additionally, autoencoders 
are effective for feature extraction, as they can capture most 
salient features of input data in learned latent space and 
autoencoders are also useful for data denoising, as they can 
learn to reconstruct clean representations of input data from 
noisy or corrupted samples, making them a valuable tool for 
handling large and complex microbiome datasets [43,44].

AI algorithms such as Random Forest, Support Vector 
Machines, K-means clustering, Convolutional Neural Networks, 
Recurrent Neural Networks, Gradient Boosting Machines, 
and Autoencoders are crucial in advancing microbiome-gut-
brain research. By using these techniques, researchers can 
decode complex interactions within the microbiome-gut-
brain axis, uncovering new insights into mental health and 
opening up novel therapeutic avenues. The application of 
these AI techniques continues to enhance our understanding 
of the microbiome’s role in mental health, paving the way for 
innovative approaches to mental health care.

AI-based analysis of microbiome data in mental health 
conditions

Artiϐicial Intelligence (AI) has become a transformative 
tool in the analysis of microbiome data, particularly in 
understanding its implications for mental health conditions. AI 
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techniques have proven important in deciphering the complex 
relationships between gut microbiota and mental health 
disorders such as depression, anxiety, multiple sclerosis, and 
autism spectrum disorder (ASD) (Figure 7).

Depression: AI techniques, particularly machine learning 
models, including Random Forest and Support Vector 
Machines (SVM), etc, have been employed to analyze the 
composition of gut microbiota in individuals suffering from 
depression. The robust capabilities of these AI models have 
enabled researchers to identify speciϐic bacterial taxa that 
are closely associated with depressive symptoms, revealing 
that individuals with depression often exhibit reduced levels 
of beneϐicial bacteria and increased levels of potentially 
pathogenic bacteria. These ϐindings highlight complex 
microbial patterns/ signatures characteristic of depression, 
providing valuable insights into the biological mechanisms of 
this mental health condition [45-47].

The implications of these AI-based ϐindings are signiϐicant, 
providing a deeper understanding of the gut microbiome’s 
role in depression, and potentially a way for the development 
of targeted therapies may inform the formulation of 
microbiome-targeted interventions, such as probiotics 
or dietary approaches, aimed at restoring a healthy gut 
microbiome to alleviate depressive symptoms [48]. 

Anxiety: Recurrent Neural Networks (RNNs), a subset 
of neural networks designed for sequential data, play a 
signiϐicant role in the analysis of time-series data related to 
changes in the microbiome and their association with levels 
of anxiety. AI models have identiϐied connections between 
symptoms of anxiety and speciϐic gut microbiota proϐiles, such 
as decreased microbial diversity and the presence of certain 
microbial metabolites that inϐluence the gut-brain axis. These 
insights into microbial factors contributing to anxiety can 
guide the exploration of microbiome-based treatments to 
mitigate anxiety symptoms. By understanding how changes 
in gut microbiota composition affect anxiety, researchers can 

develop interventions that target these speciϐic microbial 
imbalances related to symptoms of anxiety [49-51].

Multiple Sclerosis (MS): Convolutional Neural Networks 
(CNNs) and other deep learning models have been applied to 
analyze the composition of gut microbiota in patients with 
Multiple Sclerosis (MS), taking into account the complexity 
and high dimensional nature of microbiome data [52,53]. 
AI-driven studies have revealed unique and identiϐiable 
microbiome signatures/ patterns in MS patients, these 
signatures/patterns are characterized by an increased 
presence of pro-inϐlammatory bacteria and a decreased 
presence of anti-inϐlammatory species within the gut 
microbiota of MS patients. These ϐindings suggest potential 
microbial targets for therapeutic intervention, indicating that 
manipulating gut microbiota could help to effectively manage 
MS symptoms and progression. By identifying speciϐic 
microbial imbalances associated with MS, AI helps to develop 
microbiome-targeted therapies that aim to restore a healthier 
balance of gut bacteria [52,54,55].

Autism Spectrum Disorder (ASD): Unsupervised 
learning techniques, such as autoencoders, are being utilized 
to effectively reduce the dimensionality of microbiome data 
and identify key features associated with Autism Spectrum 
Disorder (ASD). AI analyses have indicated signiϐicant 
differences in gut microbiota between individuals with ASD 
and neurotypical controls. These differences include an 
imbalance of certain microbial populations and alterations 
in metabolic pathways. These discoveries provide potential 
biomarkers that could be used for early diagnosis of ASD 
and suggest that manipulating the microbiome could be a 
viable strategy for improving symptoms associated with 
ASD symptoms. By identifying speciϐic microbial signatures 
associated with ASD, AI aids in the development of personalized 
treatment approaches that target these microbial imbalances 
for individuals with ASD [56,57].

AI-based analysis of microbiome data offers signiϐicant 
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Figure 7: AI Models in Microbiome Analysis.
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insights into the microbiome-gut-brain axis and its role in 
mental health conditions like depression, anxiety, multiple 
sclerosis, and autism spectrum disorder. By using advanced 
AI techniques such as machine learning, neural networks, 
and deep learning models, researchers can uncover speciϐic 
microbial signatures, patterns, and correlations with 
mental health states. These ϐindings not only enhance our 
understanding of mechanisms but also provide a way for 
innovative, microbiome-targeted therapeutic strategies, etc. 
AI continues to be an important tool in advancing microbiome 
research, ultimately contributing to improved mental health 
outcomes for individuals [58,59]. 

Case studies

Case study 1: Cheng and Joe (2023) (volume 2649) 
explored microbiome-based machine learning for phenotypic 
classiϐication. They focused on using advanced computational 
approaches to analyze microbiome data and improve 
phenotypic classiϐication for personalized medicine and 
healthcare applications. Their result ϐindings emphasize 
the potential of machine learning to handle and interpret 
large amounts of data generated in microbiome studies. The 
incorporation of artiϐicial intelligence in this context not only 
enhances our understanding of the microbiome’s signiϐicance 
in both health and disease but also opens new opportunities 
for diagnostic and therapeutic opportunities. This case study 
exempliϐies the transformative inϐluence of machine learning 
on biological data analysis and its essential contribution to 
modern medical research and practice [60].

Case study 2: Xu, et al. (2023) introduced an innovative 
approach to cancer diagnosis using microbiome-based models 
enhanced by artiϐicial intelligence. The study, published 
in Brieϐings in Bioinformatics describes the development 
of DeepMicroCancer, a diagnosis model that uses random 
forest algorithms to achieve high performance across more 
than twenty types of cancer tissue samples. To address 
the challenge of limited sample sizes for certain cancer 
types, the model incorporates transfer learning techniques. 
DeepMicroCancer demonstrated high diagnostic accuracy 
for both tissue and blood samples, making its ϐlexibility 
and potential for clinical application. The study found that 
using advanced AI techniques to identify speciϐic microbial 
signatures can differentiate between cancerous and healthy 
states, suggesting a profound interplay between microbiome 
and cancer. Overall, DeepMicroCancer represents a signiϐicant 
advancement in cancer diagnostics, it offers a reliable tool for 
accurate and adaptable cancer detection based on microbiome 
analysis [61].

Conclusion
The microbiome-gut-brain axis is a vital connection 

between the gastrointestinal tract in addition with the central 
nervous system this bidirectional system operates through 
neural, endocrine, immune, and metabolic pathways, playing an 

important role in maintaining overall health and signiϐicantly 
impacting mental health. Artiϐicial Intelligence (AI) is being 
used to analyze and integrate large complex microbiome-
gut-brain axis data and reveal complex relationships within 
this axis, offering the development of predictive modeling, 
biomarker discovery, and a deeper understanding of the 
mechanisms connecting gut microbiota to brain function. 
The use of AI in this ϐield has already provided signiϐicant 
insights. AI models have been able to identify speciϐic 
microbial signatures/ patterns associated with mental health 
conditions like depression, anxiety, multiple sclerosis (MS), 
and autism spectrum disorder (ASD). These ϐindings highlight 
the potential for microbiome-targeted therapies, including 
dietary adjustments and probiotics, offering new possibilities 
for personalized treatment approaches. The integration of 
AI in microbiome research shows promising therapeutic 
applications. AI-driven insights can guide the development of 
novel interventions aimed at restoring healthy gut microbiota 
and alleviating symptoms of mental health disorders. 
However, several challenges remain, including the need for 
standardized data collection, processing methods to ensure 
consistency and reliability, and ethical considerations around 
data privacy and AI use in healthcare.

In conclusion, artiϐicial intelligence’s (AI) role in 
unraveling the complexities of the microbiome-gut-brain 
axis cannot be overstated. By providing deeper insights into 
complex and dynamic relationships between gut microbiota 
and brain function. This invaluable contribution is a way for 
the development of revolutionary therapeutic strategies. As 
ongoing research in this domain continues, the integration 
of AI promises to unlock new frontiers in mental health care, 
offering hope for more effective and personalized treatments.
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