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Abstract

The Positive Regulatory Domain (PRDM) protein family gene is involved in a spectrum variety of biological 
processes, including proliferation, differentiation and apoptosis: its member seem to be transcriptional 
regulators highly cell type and tissue peculiar, towards histones modifi cations or recruitment of specifi c 
interaction patters to modify the expression of target genes. In this study we analyzed the expression profi le of 
different member of PRDM gene family focusing our attention on the role of PRDM2, PRDM4 and PRDM10 genes 
in mouse C2C12 cell line, during the differentiation of myoblasts into myotubes and speculate about the role of 
the protein Retinoblastoma protein-interacting zinc fi nger protein 1-RIZ1, coded by PRDM2 gene, as a regulator 
of the proliferation/differentiation switch. 

Results showed a reduction of PRDM2, PRDM4 and PRDM10 expression level during the commitment of the 
differentiation of myoblasts into myotubes. The RIZ1 silencing stimulated myoblasts differentiation, similar to 
the effect of serum deprivation on these cells, associated with an increase of Myogenin expression level, which 
is considered to be involved in the differentiation of myoblasts into multinucleated myotubes. As demonstrated 
by chromatin immunoprecipitation experiments, RIZ1 is associated with Myogenin promoter in proliferation 
condition and after 24h from differentiation induction, negatively controlling therefore Myogenin expression. 
Moreover RIZ1 silencing induced a reduction in PRDM4 and PRDM10 expression levels leaving us to speculate 
that the PRDM genes have a redundant role and they are hierarchically organized.
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Introduction 

The myogenesis of mammalian skeletal muscle cells is regulated by myogenic 
regulatory factors (MRFs), related in a hierarchical relationship [1], which are 
considered to be members of a superfamily of the highly conserved variant of the basic 
helix-loop-helix (bHLH) domain [2], that confers their peculiar myogenic potential [3]. 
The phylogenetic analysis of the sequences of these genes indicates that MRF genes 
have evolved from a single ancestral MRF gene progenitor, by gene duplication events 
followed by divergent mutations [4]. The four main basic helix-loop-helix myogenic 
regulatory factors, which exhibit a pivotal role in skeletal muscle development and 
which are responsible for coordinating muscle-speciϐic gene expression in the 
developing embryo [5], are MyoD (Myf-3) [3], which coordinates an open chromatin 
structure at muscle-speciϐic genes [1]; Myf-5 [6], which is required for the speciϐication 
and proliferation of myoblasts [7-10], enhances myogenesis by promoting myoblast 
proliferation [11-13], because it is also the earliest to be expressed during myogenesis 
process, acting as a transcription factor in muscle progenitor cells (satellite cells) 
and myocytes [14]; Myogenin (Myf-1) [15], which is involved in the differentiation 
of myoblasts into multinucleated myotubes [16] and MRF4 [17], which is implicated 
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in the latest phase of differentiation that includes myoϐiber maintenance [18]. The 
Myogenic regulatory factor (MRF) genes are expressed with a peculiar pattern [19,20] 
and they can auto- and cross-regulate the expression of each other and interact with 
the myocyte enhancer factor-2 (MEF2) family of transcription factors, to activate the 
transcription of muscle-speciϐic genes [21]: currently, these MEF2 transcription factors 
are considered to drive the development of muscle, cardiac, skeletal, vascular, neural 
and blood cells, because of their pivotal effects on cell differentiation, proliferation, 
apoptosis, migration, shape and metabolism [22]. 

The activity of MRF proteins require heterodimerization with a member of the 
ubiquitously expressed E-protein family of bHLH proteins. This event leads the binding 
to the regulatory regions of muscle-speciϐic genes on the E-box consensus sequence 
(CANNTG) [5]. Currently, only a small fraction of 14 million potential sites are available 
for MRF binding [23,24]. MyoD, the master regulator of the skeletal muscle gene 
expression program, activates genes which display the consensus E-box sequence 
VCASCTG (where V is A, C or G while S is C or G) within their promoter/enhancer 
regions [23,25-27] and it leads a gene expression program by heterodimerizations 
with E-proteins and giving rise to multinucleated myotubes [28]. The binding of MyoD 
on the E-box sequence (CANNTG) and the recruitment of factors, which are involved in 
remodelling the chromatin, are considered the crucial event for transcription [29,30] 
because MyoD activates pRb and p21 gene expression [31,32] to shoot down the cell 
cycle machinery [29]. The skeletal muscle differentiation is a strongly coupled event to 
the cell cycle exit [33] by an upregulation of cyclin-dependent kinase inhibitors (CDKIs), 
which inhibit cyclin-CDK complexes driving a downregulation of the activity of cyclin 
D1,E,A, and B-CDK complexes [34] and by an induction of the permanent cell cycle exit. 
This is a pivotal step because of the overexpression of cyclin/CDKs has been reported 
to inhibit the activity of MyoD by different mechanisms [29]. In particular, p21cip1/
waf1, and p57/kip2, encoded respectively by Cdkn1a and Cdkn1c genes, control 
differentiation of skeletal muscle and their loss affects ϐiber formation: they have a 
key role both for cell cycle exit, both in triggering a muscle-speciϐic transcriptional 
program [35]. The PRDM (Positive Regulatory Domain) gene family which consists 
of 17 orthologs in primates and 16 orthologs in rodents, birds and amphibians [36], 
encodes transcription factors with a PR domain and a variable number of zinc ϐinger 
motifs [37], with the exception of PRDM11 [36,38]. The PR domain displays a 20-
30% amino acid homology sequence to the catalytic SET (Suvar3-9, Enhancer-of-zeste, 
Trithorax) domain with hystone lysine methyltransferase (HMTs) activity [39]. In 
contrast to the SET domain proteins, currently only three PRDM proteins have been 
demonstrated to possess intrinsic HMTase activity [40] and a number of PRDMs 
have not endowed with catalytic activity towards histones/nucleosomes [41-44]. In 
particular the HMT’s activity has been found only in the PR domains of PRDM2/RIZ1, 
Prdm8 and Prdm9 [45-47]. In fact, the PR domain has diverged signiϐicantly from 
the SET domain [48-51] and most PR domains lack the H/RxxNHxC motif required 
for methyltransferase activity [52,53]. Generally, the PR domain is localized at the 
N-terminus of the protein, whereas the SET domain is often localized to the C-terminus 
[39]. A common characteristic of PRDM genes is the expression of molecular variants 
by alternative splicing or by alternative use of promoters. The PRDM1, PRDM2 and 
PRDM3, which is also called MECOM (MDS1-EVI1 complex locus) genes are expressed as 
two alternative forms, by intergenic splicing, which produce the PR plus and PR minus 
forms of these genes [54-57]. PR plus and PR minus forms are expressed at equimolar 
concentration and their ratio is maintained in a ϐine equilibrium [58]: an imbalance 
in the amounts of the two products, through either disruption or underexpression of 
the PR plus form or overexpression of the PR minus form commonly occurs in human 
cancers through genetic and epigenetic mechanisms [59-66]. PRDM2 gene gives two 
alternative products: RIZ1, the PR plus form, implicated in tumor suppressor function, 
and RIZ2, the PR minus form. This PR domain (PRDI-BF1 and RIZ homologous) [67] 
which is endowed with histone H3 K9 methyltransferase activity, is targeted by 
inactivating mutations in human cancers [68]. 
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PRDM proteins mediate transcriptional activation or repression depending on the 
nature of their intrinsic HMT activity: PRDM proteins appear to function by modulating 
gene expression states either directly (via intrinsic HMTase activity), or indirectly (via 
recruitment of various cofactors), controlling critical aspects of cell integrity, spanning 
from cell differentiation to cell growth and apoptosis [58]. These genes also play a role 
in human cancer, where they mainly act as tumor suppressors: for example, PRDM1 is 
a tumor suppressor of diffuse large B cell lymphoma (DLBCL); PRDM3 and PRDM16 
show different isoforms with separate functions in leukemia [44,69]. PRDM16 (PRD1-
BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch 
between skeletal myoblasts and brown fat cells [70], the targeting of 3’UTR of Prdm16 
is involved in the choise between myogenic and brown adipose determination of the 
adult skeletal muscle stem cells (satellite cells) [71], PRDM5 acts with a potential 
tumor suppressor role for gastrointestinal carcinogenesis [72-74]. 

The RIZ proteins regulate cell proliferation in a yin-yang manner [57,58,75]: gene 
silencing of the RIZ1 form, by genetic or epigenetic mechanisms, has been described 
in a variety of human tumors [14], whereas the RIZ2 form, lacking of PR domain, is 
always present or overexpressed [76]: this ϐinding suggests a positive selection for 
RIZ2 in cancer progression. Further evidence indicates that forced expression of RIZ1 
in tumor cell cultures induces growth arrest and apoptosis, possessing an anticancer 
activity in the PR domain [77], and the silencing of RIZ1 expression can stimulate 
breast cancer cell proliferation [78]. In addition, forced expression of the Zn-ϐinger 
domain present in both RIZ forms increases the growth rate of breast cancer cells [79]. 
Based on these ϐindings, RIZ1 could be considered as a crucial tumor suppressor gene 
candidate and the Zn-ϐinger domain could be responsible for the putative oncogenic 
activity of the RIZ2 gene product. Such an effect might be more relevant in estrogen 
target tissues, where RIZ gene products are reported to directly interact with the 
estrogen receptor in a hormone-dependent manner through a LXXLL motif [80,81], 
promoting optimal estrogen response; conversely, in osteosarcoma cancer cell line 
(SAOS2), RIZ1 is expressed at high level in proliferating cell compared to serum-free 
culture conditions [82]. Murine models studies demonstrated that PRDM1 regulates 
commitment, as well PRDM14, PRDM9 is involved in meiosis [83], PRDM16 is involved 
in the switch controlling of myoblast differentiation to brown adipocytes [70,84]; 
PRDM3 and PRDM16 are also required for the maintenance of brown adipocyte 
identity [85], but currently the PRDM2 role in the development and in myoblast 
differentiation is still unclear. The purpose of this study therefore was to investigate 
the expression proϐile and the role of PRDM genes in the molecular mechanism 
responsible of the proliferation-differentiation switch, paying particular focus on the 
PRDM2 gene expression in skeletal muscle C2C12 cell line, an established cell model 
for skeletal muscle differentiation studies [86,87], that has been successfully used to 
study differentiation and proliferation-differentiation switch [88]. 

Materials and Methods 
Cell culture and transfection

C2C12 cells (kindly provided by Professor Fabio Naro from University “La Sapienza”-
Rome) were maintained in DMEM (Invitrogen, Carlsbad, CA, USA) supplemented 
with 10% fetal bovine serum, FBS (Invitrogen), referred as GM, i.e. growth medium, 
in humidiϐied 95% air and 5% CO2. As the cells reached conϐluence, the medium was 
replaced with DMEM supplemented with 10 μg/ml insulin (Invitrogen). And 5 μg/
ml transferrin (Invitrogen) referred as DM, i.e. differentiation medium, to induce 
differentiation of myoblasts into myotubes. Cell transfection with plasmid DNA 
was performed using Lipofectamine® 2000 Reagent (GIBCO BRL, Life Technologies, 
Rockville, MD, USA) in OptiMem I Reduced Serum Medium (Invitrogen) for 6 hours, 
according to the manufacturer’s instructions. Transfection medium was then removed, 



The master regulator gene PRDM2 controls C2C12 myoblasts proliferation and Differentiation switch and PRDM4 and PRDM10 expression

Published: September 25, 2017 078

and cells were grown in DMEM supplemented with 5% FBS or DM, as indicated in 
the legend to ϐigures, for additional 24-48-72 hours. Reverse transcriptase-polymerase 
chain reaction (RT-PCR)-Total RNA (1 μg) was extracted from C2C12 cells using Trizol 
reagent (Invitrogen), according to the manufacturer’s instructions. Gel electrophoresis 
in denaturing conditions was performed to evaluate the integrity of extracted RNA; 
the quality of RNA extracted was evaluated by the measure of 260/280 nm and 
260/230 nm absorbance ratios (the threshold acceptance was 1.9 for absorbance ratio 
260/280 nm and 2.2 for absorbance ratio 260/230). To remove contaminant DNA, 
RNA samples were treated with 40 U of RNase-free DNase-I (Boehringer Mannheim, 
Indianapolis, IN, USA) for 45 minutes at 37°C. The absence of contaminant genomic/
plasmid DNA was checked by PCR of not reverse transcribed RNA samples. Total RNA 
was reverse transcribed using cDNA Synthesis Kit Transcriptor High Fidelity (Roche, 
Basilea, Switzerland). The cDNAs ampliϐications were performed by RT-PCR with 
speciϐic primers set for glyceraldehyde-3-phosphate dehydrogenase (GAPDH)s, for 
MRF and for the detection of the PRDM plus transcript (PRDM PR as reported in table 
1) and also for all PRDM transcripts (PRDM TOT as reported in table 1) using JF buffer 
(30mM Tris base, 8mM HEPES base, 20mM K glutamate, 60mM NH4 acetate, 2mM DTT, 
8% glycerol, 1.5mM MgCl2, 0.2mM dNTPs) [79]. The reaction was performed using a 
thermal cycler (Eppendorf, Milan, Italy). Analysis of ampliϐied products was done by 
electrophoresis on 2% agarose gel. The gel images were acquired by the Gel DOC XR 
System platform (Bio-Rad laboratories, Hercules, CA).  

Table 1: Sequences of primers used for RT-PCR analysis ZA .
PRDM2 PR F ACTGGCTCCGCTATGTGAAC 
PRDM2 PR R CGCGATTGGCTTTAAGGTT 

PRDM2 TOT F CCGGAGAGGGAAGAAGAAAT 
PRDM2 TOT R TCATGTTTGCAGAGGTGGAG 
PRDM10 PR R TCACGAACTCAGCGTAGGATG 
PRDM10 PR F TGGTCCTCTACATAGATAGGTT 

PRDM10 TOT F TGAATGGACTAGATCAGCCAG 
PRDM10 TOT R AGCCCTTGTTACAGAGATCAC 

PRDM4 PR F AGCAGCTTGTTCTCCGCCAGTCC 
PRDM4 PR R GCACTCCTTGCCACAGTTACAGAG 

PRDM4/PFM F TCTCCCTCTCACAGTGCCAT 
PRDM4/PFM R GATCTAGTGCTGAAGGGTTGTTGG 

PRDM1 PR F GACGGGGGTACTTCTGTTCA 
PRDM1 PR R GGCATTCTTGGGAACTGTGT 

PRDM1 TOT F ACACCGGGACTCCTACTCCT 
PRDM1 TOT R GTACGGTGGCAACAGGAACT 
PRDM5 PR F GAGCCGAGCTCATTTCCTC 
PRDM5 PR R GTACGTACATGCCCAGCATC 

PRDM5 TOT F GCCATTCAAACACACACAGG 
PRDM5 TOT R TTTCACAGTACGGGCATTGA 
PRDM14 PR F TTGGTGATGTGCCACACTTT 
PRDM14 PR R TCCAGTTCCCAGAACCTTTG 

PRDM14 TOT F CACTCCCGAAGTACCACGAT 
PRDM14 TOT R CCCACCTCTGACCACTGATT 
PRDM16 PR F TTCCAATCCCACCAGACTTC 
PRDM16 PR R CATCTGCTCCCATCCAAAGT 

PRDM16 TOT F TGGGCTCACTACCCTACCAC 
PRDM16 TOT R GACTTTGGCTCAGCCTTGAC 

MyoD F TGGGATATGGAGCTTCTATCGC 
MyoD R GGTGAGTCGAAACACGGATCAT 
Myf-5 F TGAAGGATGGACATGACGGACG 
Myf-5 R TTGTGTGCTCCGAAGGCTGCTA 

Myogenin F AGGAGAGAAAGATGGAGTCCAGAG 
Myogenin R TAACAAAAGAAGTCACCCCAAGAG 

c-Myc F ATGCCCCTCAACGTGAACTTC 
c-Myc R CGCAACATAGGATGGAGAGCA 

GAPDH F TGTGTCCGTCGTGGATCTGA 
GAPDH R CCTGCTTCACCACCTTCTTGA 
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Quantitative Reverse-Transcription PCR (qRT-PCR) Analysis-Aliquots of cDNA were 
subjected to quantitative analysis by real-time PCR (qRT-PCR) using the SYBR Green 
PCR Master Mix (Applied Biosystems, Foster City, CA) in a Mastercycler ep Realplex 
(Eppendorf), as previously described [89]. The ampliϐication was performed using the 
same primer sets of semi-quantitative RT-PCR. GAPDH was used as housekeeping gene 
for normalization. The dissociation curves showed a single peak and the agarose gel 
analysis of PCR amplicons showed a single DNA band of the expected molecular size. 
The relative quantiϐication (RQ) was performed using the Δ-ΔCt method [90]. Data 
were presented as RQ (Relative Quantiϐication) by comparing the threshold cycle of 
PCR products to the threshold cycle of standard cDNA. The linearity and the efϐiciency 
of the PCR reaction were analyzed by serial cDNA dilutions. Each ampliϐication was 
done in triplicate and the reaction speciϐicity was assessed by melting curves analysis. 
PRDM2 PR silencing by RNA interference -The gene silencing of PRDM2 PR gene product 
was achieved using the BLOCK-iT™ Pol II miR RNAi with emGFP expression vector 
(Invitrogen), according to the manufacturer’s instructions. The oligonucleotides, 
Hmi418948 and Hmi418951, which target PRDM2 PR gene product (Invitrogen 
Co.), were cloned into the vector (pcDNA™ 6.2-GW/EmGFP-miR). C2C12 cells were 
transfected with recombinant vector or with kit control vector (β-galactosidase, CTRL). 
Protein assay -The protein concentration was measured with BIO-RAD Protein Assay 
(Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s instructions. 

Western blot analysis- C2C12 cells were washed with PBS and lysed in RIPA 
buffer 1X [50 mM Tris HCl pH 7.5, 150 mM NaCl, 0.25 % sodium deoxycholate, 1% 
NP-40 supplemented with protease inhibitor cocktail (Roche, Basilea, Svizzera). The 
clariϐied lysates were processed for Sodium Dodecyl Sulphate - PolyAcrylamide Gel 
Electrophoresis, SDS- PAGE (10% polyacrylamide gel) according to Laemmli procedure 
[91]; subsequently the proteins were transferred to PVDF membrane (Santa Cruz 
Biotechnology, Inc., Santa Cruz, CA) using transfer buffer. Blots were blocked with 20 
mM Tris pH 7.8, 100 mM NaCl, 0.1% Nonidet P40/Tween 20(1:1), 5% non-fat milk 
and incubated with primary antibodies diluted in the same buffer (0.1ml/cm2). The 
following antibodies were used at the indicated concentrations: mouse monoclonal anti-
MyoD: sc-32758 (Santa Cruz Biotechnology) at the following concentration 0.2μg/ml; 
mouse monoclonal anti- Myc: sc-40 (Santa Cruz Biotechnology,  Inc., Santa Cruz, CA) at 
the following dilution 1:500; mouse monoclonal anti-Myogenin: sc12732 (Santa Cruz 
Biotechnology, Inc.,Santa Cruz,CA) at the following dilution 1:500; rabbit polyclonal 
antibodies to RIZ1, RIZ 9710 (Abcam Ltd., Cambridge, UK) at the following dilution 
1:1000, rabbit polyclonal antibodies against PRDM4 and PRDM10 (EPIGENTEK) at 
the following dilution 1:1000. Thereafter the same ϐilter was stripped and reprobed 
with mouse monoclonal antibody against Histone H1 (Santa Cruz Biotechnology, Inc., 
Santa Cruz, CA) at the following dilution 1:1000. Peroxidase-conjugated anti-rabbit 
IgG or anti-mouse IgG secondary antibodies were used at 1:5000 dilution. Peroxidase 
activity was detected using an Amersham ECLTM Advance Western Blotting Detection 
Kit (GE Healthcare, Little Chalfold, UK), according to the manufacturer’s instructions. 
Membranes were exposed with Amersham Hyperϐilm ECL ϐilm (GE Healthcare, Little 
Chalfold, UK) and images were acquired with the Gel DOC XR Platform (Bio-Rad 
Laboratories, Hercules, CA). 

Cell growth analysis- Cell proliferation was evaluated by cell counting, by MTT 
(3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Sigma-Aldrich, 
Co. St. Louis, MO, USA) and by FACS (Fluorescence Adsorbed Cell Sorting, Becton 
Dickinson, New Jersey, USA) analysis as previously indicated [58]. 

Immunofl uorescence analysis

Myoblasts were plated on poly-L-lysine (3x)-coated coverslip and cultured in DM 
for 72h. Subsequently DM was discarded and cells washed three times with PBS and 
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incubated at room temperature with freshly-made paraformaldehyde (4% w/v) for 
10 min. The cells were washed with glycine 0.1% for 5 min, followed by three washing 
in PBS, subsequently incubated for 2 hours with the following primary antibodies: (a) 
mouse monoclonal anti-MyHC (Sigma-Aldrich, Co. St.Louis, MO,USA) at the following 
dilution 1:500; (b) RIZ 9710 (Abcam Ltd, Cambridge, UK) at the following dilution 1:100. 
The primary antibodies were diluted in PBS containing 10% (v/v) fetal bovine serum 
(FBS) and 0.1% Triton X-100. Cells were then washed in PBS and incubated at room 
temperature for 1 h with ϐluorescent secondary antibodies (Jackson Laboratories, USA): 
(a) anti-mouse or anti-rabbit IgG conjugated to Texas red were diluted 1:100 in PBS 
containing 10%(v/v) fetal bovine serum (FBS) and 0.1% Triton X-100. Subsequently, 
coverslips were placed onto untreated glass slides and allowed to air dry. Coverslips 
were analyzed using a Zeiss LSM 510 Meta argon/krypton laser scanning confocal 
microscope. Each image was acquired 4 times and the signal averaged to improve the 
signal to noise ratio. Computer-assisted quantitative evaluation of channel distribution 
in cell compartment was done using the Image-J software. 

Chromatin immunoprecipitation (ChIP)

C2C12 cells (approximately 5x106 cells/plate) were cultured in GM or in DM for 
24, 48 and 72 hours. One-tenth aliquots were immunoprecipitated using the following 
antibodies: 1μg of puriϐied IgG control antibody (Sigma-Aldrich), 1mg of rabbit 
polyclonal anti-RIZ1 (Abcam Ltd, Cambridge, UK) or 1 μg of mouse monoclonal anti-
MyoD (Santa Cruz Biotechnology Inc., Santa Cruz, CA). Secondary immunoprecipitation 
was performed with Sepharose coupled to protein A (Sigma-Aldrich, Co. St. Louis, MO, 
USA). One-twenty-ϐifth of the DNA extracted from each immunoprecipitation was 
ampliϐied using primers complementary to the Myogenin promoter region E2_E1 
Forward-GAATCACATGTAATCCACTGGA E2_E1 Reverse- ACGCCAACTGCTGGGTGCCA). 
Ampliϐications were performed for an empirically determined number of PCR cycles 
producing a linear correlation between ampliϐied band signals and template dilutions. 
AmpliTaq polymerase in AB1 buffer (30mM Tris base, 10mM HEPES base, 25mM KCl, 
20mM K glutamate, 20mM NH4 acetate, 1.25mM DTT, 5% glycerol, 1.25mM MgCl2, 
0.2mM dNTP) (Applied Biosystems, Foster City, CA) was used for all PCR analyses.  
Ampliϐication products were analyzed by 2% agarose gel electrophoresis and bands 
were visualized with the Gel DOC XR System (Bio-Rad laboratories, Hercules, CA); 
densitometric analysis was performed using Total Lab 1D software. Statistical analysis 
-Statistical signiϐicance was determined with a paired t-test with Graphpad prism 5.0 
software (La Jolla, CA, USA). 

Results 
Analysis of the expression levels of MRF genes and PRDM genes in myoblasts 
and myotubes 

To induce differentiation of myoblasts into myotubes, conϐluent C2C12 cells were 
incubated in low mitogenic media (DM) and after 72 hours, differentiation is complete 
as observed by morphological changes. To verify the ϐidelity of the model used, an 
immunoϐluorescence analysis (Figure 1S a) of C2C12 cells differentiated in the same 
experiment was performed. The results revealed that after 72 h in DM medium cells 
formed myotubes expressing the myosin heavy chain (MyHC), a marker of myoblasts 
differentiation (Figure 1S b-c) [92]. The expression level of PRDM genes (PRDM1, 2, 4, 5, 
10, 14 and 16) and MRF genes: Myc and Myogenin was evaluated by qRT-PCR analysis. 
The ampliϐication of PR plus product was performed with a set of primer amplifying a 
transcript region encoding for the PR domain (PRDM PR F/R) and another primer set 
was used for ampliϐication of a region common to both PR plus and PR minus forms 
(PRDMtot F/R). As expected, the low mitogenic environment increased the expression 
level of differentiation markers Myogenin and reduced the proliferation markers c-Myc 
(Figure 1). In our experimental conditions, myotubes showed no signiϐicant variation 
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in the PRDM1, PRDM5, PRDM14 and PRDM16 expression level than myoblasts. On the 
other hand, PRDM2, PRDM4 and PRDM10 expression levels falls down into myotubes 
than myoblasts. So we decided to further investigate the variation in the expression 
level of PRDM genes that showed a signiϐicantly difference in the expression level 
between myoblasts and myotubes. 

Analysis of the expression levels of MRF genes and PRDM genes during 
differentiation of myoblasts in myotubes 

To induce differentiation of myoblasts into myocytes, conϐluent C2C12 cells were 
incubated in low mitogenic media (DM) and at different time (0, 24, 48, 72 hours) 
was evaluated by qRT-PCR the expression level of MRF genes: Myc, Myf5, MyoD and 
Myogenin. As expected, the low mitogenic environment increased quickly the expression 

Figure 1S: Immunofl uorescence analysis of the differentiation marker, myosin heavy chain, MyHC, in C2C12 cell line 
cultured in GM or DM. C2C12 cells were plated on glass slides for immunofl uorescence and cultured for additional 
120 hours in DM. After treatment, the cells were fi xed, permeabilized and incubated with an antibody against the 
differentiation marker, myosin heavy chain, MyHC. Nuclei were stained with the chromomycin dye. The slides were 
analyzed by confocal fl uorescence microscopy and signifi cant images were acquired and displayed.

Figure 1: MRF and PRDM gene expression in myoblasts and myotubes. The electrophoretic analysis shows the 
fragments obtained by RT-PCR of total mRNA/cDNA extracted from C2C12 cell. The amplifi cation of PR plus 
product was performed with a set of primer amplifying a transcript region encoding for the PR domain (PRDM PR 
F/R) and another primer set was used for amplifi cation of a region common to both PR plus and PR minus forms 
(PRDMtot F/R).
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of differentiation markers MyoD and Myogenin and reduced the proliferation markers 
Myc and Myf5 expression level (Figure 2). It has been extensively demonstrated by 
Cheedipudi et al. [87], that PRDM2 gene expression levels is lower in myotubes than 
myocytes but no evidence are available on the variation of other member of PRDM 
family gene expression level during differentiation induction. In order to determine 
the precise temporal gap in which occurred PRDM expression level variation, qRT-
PCR analysis of total C2C12 RNA extracted at different time (24, 48 and 72 hours) 
from differentiation induction was performed. As shown in ϐigure 3A and B, at 24 h 
from differentiation induction PRDM2, PRDM4 and PRDM10 genes were expressed at 
lower level then myoblasts. This reduction was more evident at 72 h for PRDM2 PR 
plus product. Interestingly and according to Cheedipudi [87], the maximal expression 
of Myogenin at 72 h from differentiation induction corresponds to the reduction of 
band intensity of PRDM2 PR. The particular behaviour of PRDM2 gene prompted us 
to investigate the relationship between PRDM2 gene and myoblasts differentiation. 
Immunoϐluorescence analysis (Figure 2S) of C2C12 in GM or after culture in DM for 24 

Figure 2: MRF genes expression after induction of differentiation. The transcripts encoded by MRF genes was 
measured by RT-PCR and qRT-PCR after 24, 48, 72 hours of differentiation induction (see Materials and methods 
section). The expression level is indicated as fold changes from basal conditions. A) Electrophoretic analysis 
of the fragments obtained by RTPCR of total mRNA/cDNA extracted from C2C12 cells; B) qRT-PCR of mRNA/
cDNA extracted from C2C12 cells. Histograms represent the averages (+/− standard error) from at least three 
independent experiments, normalized for the expression of the control housekeeping gene GAPDH, reported in 
fi gure 2 (# indicates p < 0.05 for each gene versus control).

Figure 2S: Immunofl uorescence analysis of the RIZ1 protein in the C2C12 cell line cultured in GM or DM. C2C12 
cells were plated on glass slides for immunofl uorescence and cultured for additional 24 hours in GM or DM. After 
treatment, the cells were fi xed, permeabilized and incubated with an antibody against the RIZ1 protein. Nuclei were 
stained with the chromomycin dye. The slides were analyzed by confocal fl uorescence microscopy and signifi cant 
images were acquired and displayed.
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h revealed that RIZ1 in proliferating condition is predominantly localized in the nucleus 
and translocates into the cytoplasm when C2C12 cells are committed to differentiate. 

Effect of PRDM2 silencing on C2C12 myoblasts differentiation 

As observed by qRT-PCR analysis of PRDM2/RIZ1 (60%) forced suppression with 
the plasmid coding the miRNAPRDM2 spanning a sequence coding for the aa 97-103 
of RIZ1 protein, induced an increase in expression level of the differentiation markers 
MyoD and Myogenin that was more evident for the last one (Figure 4). This evidence 
conϐirms that RIZ1 protein negatively controls the induction of differentiation mediated 
by MRF factor. Western blot analysis of whole cell lysates from C2C12 transiently 
transfected with a control plasmid or with the plasmid coding the miRNAPRDM2, 

Figure 3: Modulation of PRDM genes expression during differentiation. The transcripts encoded by PRDM genes 
was measured by RT-PCR and qRT-PCR after 24, 48, 72 hours of differentiation induction (see Materials and 
methods section). The expression level is indicated as fold changes from basal conditions. The PRDM PR and 
PRDM2tot sets of primers recognize sequences on the region coding PR domain of PRDM genes or on a region 
common to both PRDM PR plus and minus, respectively. A) Electrophoretic analysis of the fragments obtained 
by RT-PCR of total mRNA/cDNA extracted from C2C12 cells; B) qRT- PCR of total mRNA/cDNA extracted from 
C2C12 cells. Histograms represent the averages (+/− standard error) from at least three independent experiments, 
normalized for the expression of the control housekeeping gene GAPDH (# indicates p < 0.05 for each form of 
PRDM genes versus their untreated control).

Figure 4: Modulation of MRF genes expression during differentiation. The transcripts encoded by PRDM genes was 
measured by RT-PCR and qRT-PCR after 24, 48, 72 hours of differentiation induction (see Materials and methods 
section). The expression level is indicated as fold changes from basal conditions. The PRDM PR and PRDM2tot 
sets of primers recognize sequences on the region coding PR domain of PRDM genes or on a region common 
to both PRDM PR plus and minus, respectively. A) Electrophoretic analysis of the fragments obtained by RT-PCR 
of total mRNA/cDNA extracted from C2C12 cells; B) qRTPCR of total mRNA/cDNA extracted from C2C12 cells. 
Histograms represent the averages (+/− standard error) from at least three independent experiments, normalized 
for the expression of the control housekeeping gene GAPDH (# indicates p < 0.05 for each form of PRDM genes 
versus their untreated control).
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showed a strong reduction in the RIZ1 expression level, revealing the efϐicacy of the 
interference (Figure 5). The PRDM2/RIZ1 silencing induced a decrease in the PRDM4 
and PRDM10 expression levels. These evidence support the hypothesis that different 
genes of PRDM family control proliferation/differentiation switch and are probably 
organized in a hierarchical manner. 

Interaction of RIZ with E2/E1 Myogenin promoter region

ChIP experiments were performed to detect the presence of MyoD, a master 
regulator of the skeletal muscle gene expression program [28], and RIZ on E2/E1 
Myogenin promoter region during differentiation induction. Therefore, equivalent 
amounts of cross-linked chromatin from myoblasts cultured in GM or DM (24, 48 and 
72 hours) were immunoprecipitated in parallel with two antibodies that recognize 
PRDM2/RIZ1 or MyoD. The precipitated DNA then was subjected to PCR ampliϐication 
with the use of a primers set, spanning two of the E-box sites (E1 and E2) located in the 
proximal region of Myogenin promoter. Results shown in Fig. 6B, revealed that MyoD 
was ever associated with Myogenin promoter according to Mal et al., [93]; conversely, 
as shown in ϐigure 6A, RIZ1 was associated with the E2/E1 Myogenin promoter region 

Figure 5: Modulation of PRDM and MRFs proteins expression into PRDM2 silenced C2C12 myoblasts. The 
expression level of protein encoded by PRDM2, PRDM4 and PRDM10 genes and MRFs was evaluated by SDS-
PAGE and Western blot analysis of total protein cell extracts from C2C12 myoblasts and PRDM2 silenced C2C12 
myoblasts (see Materials and methods section). The blots are representative of three independent experiments.

Figure 6: Interaction of RIZ with E1/E2 promoter. ChIP analysis of E2/E1 myogenin promoter region. Densitometric 
analysis of bands amplifi ed from ChIP samples with antibodies to RIZ1 (upper panel) or to MyoD (lower panel), 
expressed as percentage of the input after background subtraction. The graph is representative of three independent 
experiment (* indicates p < 0.05 vs control).
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in myoblasts at 24h whereas at 48h and 72h no association of RIZ1 was detected. The 
speciϐicity of this assay is demonstrated by the observation that the binding of MyoD or 
RIZ1 was not observed when a normal rabbit IgG was used in the analysis. 

RIZ1 silencing induced cell cycle arrest 

In order to investigate the effect of RIZ silencing on proliferation rate, we performed 
a cell cycle analysis evaluating propidium iodide incorporation by FACS. As shown in 
ϐigure RIZ1 silencing by miRNA induced a G1 phase delay. Likewise MTT assays of 
C2C12 cells transfected with the miRNAPRDM2 plasmid signiϐicantly reduced the cells 
number (Figure 7). 

Discussion 

PRDM family gene plays a key role in the control of a plethora of cell life processes, 
like cell cycle progression, homeostasis maintenance of immune system and control 
of early stage of development. PRDM1 and PRDM14 for example guide the epigenetic 
reprogramming, necessary to determinate the progenitors of germ cells during 
embryonic development; PRDM9 also is indispensable for meiotic prophase progression 
during gametogenesis; PRDM16 controls the cell fate switch between myoblasts and 
brown adipocytes: recently studies, conducted by Li et colleagues, demonstrated that 
C2C12 myoblasts, stably transfected with PRDM16, showed a repression of myogenic 
genes and an upregulation of adipogenic genes at proliferation and differentiation 
genes, probably due to CpG methylation of MyoD [84].  To this behaviour, the study 
of molecular basis of PRDM action mechanism appears very important. Data obtained 
by RT-PCR and Western blot analysis in C2C12 cell line showed that the expression 
of PRDM2 gene was selectively modulated during differentiation, because of the 
differentiated cells showed reduced levels of expression of RIZ1 than myoblasts. This 
trend is in disagreement with the experimental evidence obtained in epithelial cell line 
models [78] and lymphocytes [94] in which treatment with differentiating agents, or 

Figure 7: Effect on cell proliferation and survival upon RIZ1 knock down in C2C12 cell line. (A) For the colorimetric 
MTT assay, C2C12 cells transiently transfected with a plasmid encoding a miRNA against RIZ1 or a not-targeting 
plasmid (ctrl) were plated at the same density and allowed to grow for 0, 24 or 48 h. MTT was added in the last 
2 h, formazan precipitates were dissolved with dimethyl sulfoxide reagent and absorbance read at 570 nm [31]. 
Values are the mean (±SE) of three analyses from three independent experiments # p < 0.05 vs. control; (B) C2C12 
cells transiently transfected with a plasmid encoding a miRNA against RIZ1 or a not-targeting plasmid (ctrl) were 
cultured in 60-mm dishes for 48 h. Cells were processed following manufacturer’s instruction and fi nally analyzed 
by fl ow cytometer to determine the percentage of cells in the different phases of cell cycle. The data are the mean 
of three independent experiments performed in triplicate (  = 9) # p < 0.05 vs control. 
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the stimulation of cell proliferation, respectively, caused the increase and decreased 
of PRDM2/RIZ1 expression. On the contrary, there are some similarities with the 
experimental evidence obtained with the osteosarcoma cell line (SAOS2), in which 
PRDM2/RIZ1 showed an elevated expression in proliferating cells, compared to cells 
that had temporarily left the cell cycle [95]. These suggestions left us to speculate that 
RIZ can be related to the cell type and in the mesenchymal cells perhaps cell cycle 
escape and subsequent differentiation coincide with RIZ1 expression level reduction: 
immunocytochemistry experiments, performed in myoblasts and myotubes, showed 
that during differentiation there is an intracellular redistribution of RIZ protein, 
predominantly localized in the perinuclear and nuclear area. This phenomenon, as 
myeloid leukemia cell line HL60, could be interpreted as an intranuclear conϐinement 
of RIZ protein. Expression level analysis by qRT-PCR of other member of PRDM family 
gene PRDM4 and PRDM10 showed that the differentiation induction was characterized 
by a reduction of its expression levels. In order to conϐirm the involvement of PRDM2 
gene in the proliferation-differentiation switch, we performed knockdown experiments. 
Interestingly, the PRDM2 gene silencing was characterized by a Myogenin expression 
level increasing, suggesting its peculiar role in the transcriptional control of myogenin 
expression. ChIP experiments performed with MyoD and RIZ antibodies on E2/E1 
Myogenin promoter region in proliferation condition and after 24 h from differentation 
induction, conϐirmed a binding on the Myogenin promoter. As demonstrated by Mal 
A. [93], Lys-9 of H3 histones were methylated by SUV39H1 [96], surrounding the 
myogenin promoter in undifferentiated myoblasts. This marking was dramatically 
reduced in myoblasts that had undergone differentiation. We hypothesize that another 
member of SET family protein, RIZ1, can modulate myogenin expression, and RIZ1 
interference reduced the expression level of PRDM4 and PRDM10 genes, lead us to 
speculate that the members of the family have a redundant PRDM behavior and/or 
cooperate in the transition proliferation-differentiation. Futhermore PRDM2 silencing 
induced a G1 phase delay and a reduction of proliferation. 

Conclusion 

In conclusion, our studies suggest that PRDM2, PRDM4 and PRDM10 play a pivotal 
role in the proliferation-differentiation switch of myoblast in myotubes. 
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