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ABSTRACT

Transglutaminases are a family of Ca2+-dependent enzymes which catalyze post-translational modifi cations 
of proteins. The main activity of these enzymes is the cross-linking of glutaminyl residues of a protein/peptide 
substrate to lysyl residues of a protein/peptide co-substrate. In addition to lysyl residues, other second 
nucleophilic co-substrates may include monoamines or polyamines (to form mono-or bi-substituted/crosslinked 
adducts) or -OH groups (to form ester linkages). In absence of co-substrates, the nucleophile may be water, 
resulting in the net deamidation of the glutaminyl residue. Transglutaminase activity has been suggested to be 
involved in molecular mechanisms responsible for both physiological and pathological processes. In particular, 
transglutaminase activity has been shown to be responsible for human autoimmune diseases, and Celiac 
Disease is just one of them. Interestingly, neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s 
disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by 
aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. Here we 
describe the possible molecular mechanisms by which these enzymes could be responsible for such diseases 
and the possible use of transglutaminase inhibitors for patients with diseases characterized by aberrant 
transglutaminase activity.
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BIOCHEMISTRY OF THE TRANSGLUTAMINASES 

Transglutaminases (TGs, E.C.2.3.2.13) are Ca2+-dependent enzymes which catalyze 
post-translational modiϐications of proteins. Examples of TG-catalyzed reactions 
include: (I) acyl transfer between the γ-carboxamide group of a protein/polypeptide 
glutaminyl residue and the ε-amino group of a protein/polypeptide lysyl residue; 
(II) attachment of a polyamine to the γ-carboxamide of a glutaminyl residue; (III) 
deamidation of the γ-carboxamide group of a protein/polypeptide glutaminyl residue 
(Figure 1) [1,2]. The reactions catalyzed by TGs occur by a two-step mechanism (ping-
pong type), (Figure 2). The transamidating activity of TGs is activated by the binding 
of Ca2+, which exposes an active-site cysteine residue. This cysteine residue reacts 
with the γ-carboxamide group of an incoming glutaminyl residue of a protein/peptide 
substrate to yield a thioacyl-enzyme intermediate and ammonia, (Figure 2, Step 1). The 
thioacyl-enzyme intermediate then reacts with a nucleophilic primary amine substrate, 
resulting in the covalent attachment of the amine-containing donor to the substrate 
glutaminyl acceptor and regeneration of the cysteinyl residue at the active site, (Figure 
2, Step 2). If the primary amine is donated by the ε-amino group of a lysyl residue in a 
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Figure 2: Schematic representation of a two-step transglutaminase reaction. Step 1: In the presence of Ca2+, the 
active-site cysteine residue reacts with the γ-carboxamide group of an incoming glutaminyl residue of a protein/
peptide substrate to yield a thioacyl-enzyme intermediate and ammonia. Step 2: The thioacyl-enzyme intermediate 
reacts with a nucleophilic primary amine substrate, resulting in the covalent attachment of the amine-containing 
donor to the substrate glutaminyl acceptor and regeneration of the cysteinyl residue at the active site. If the primary 
amine is donated by the ε-amino group of a lysyl residue in a protein/polypeptide, a Nε-(γ-L-glutamyl)-L-lysine 
(GGEL) isopeptide bond is formed.

Figure 1: Examples of reactions catalyzed by TG: (I) acyl transfer between the γ-carboxamide group of a protein/polypeptide glutaminyl residue and the ε-amino group of 
a protein/polypeptide lysyl residue; (II) attachment of a polyamine to the γ-carboxamide of a glutaminyl residue; (III) deamidation of the γ-carboxamide group of a protein/
polypeptide glutaminyl residue; (IV) GTPase activity; (V) protein disulfi de isomerase activity; (VI) protein kinase activity.
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protein/polypeptide, a Nε-(γ-L-glutamyl)-L-lysine (GGEL) isopeptide bond is formed, 
(Figure 1A, example I). On the other hand, if a polyamine or another primary amine 
(e.g. histamine, serotonin and others) acts as the amine donor, a γ-glutamylpolyamine 
(or γ-glutamylamine) residue is formed, (Figure 1, example II). It is also possible for a 
polyamine to act as an N,N-bis-(γ-L-glutamyl)polyamine bridge between two glutaminyl 
acceptor residues either on the same protein/polypeptide or between two proteins/
polypeptides [3]. If there is no primary amine present, water may act as the attacking 
nucleophile, resulting in the deamidation of glutaminyl residues to glutamyl residues, 
(Figure 1, example III). Regarding the physiological roles played by the transglutaminase 
activity, recently transglutaminase-catalyzed polyamination of tubulin has been shown 
to stabilize axonal microtubules, suggesting an important role for these reactions 
also during some physiological processes, such as neurite outgrowth and axon 
maturation [4]. The reactions catalyzed by TGs occur with little change in free energy 
and hence should theoretically be reversible. However, under physiological conditions 
the cross linking reactions catalyzed by TGs are usually irreversible. This irreversibility 
partly results from the metabolic removal of ammonia from the system and from 
thermodynamic considerations resulting from altered protein conformation. Some 
scientiϐic reports suggest that TGs may be able to catalyze the hydrolysis of Nε-(γ-L-
glutamyl)-L-lysine cross-links (GGEL) isopeptide bonds in some soluble cross-linked 
proteins. Furthermore, it is likely that TGs can catalyze the exchange of polyamines 
onto proteins [2]. In TG2 other catalytic activities, such as the ability to hydrolyze 
GTP (or ATP) into GDP (or ADP) and inorganic phosphate (Figure 1, example IV), a 
protein disulϐide isomerase activity (Figure 1, example V), and a kinase activity which 
phosphorylates histones, retinoblastoma (RB) and P53 (Figure 1, example VI), are 
present, while only some of these activities have been identiϐied also in other TGs [5-8]. 

Ample experimental evidence indicate that some TGs are multifunctional 
proteins with distinct and regulated enzymatic activities. In fact, under physiological 
conditions, the transamidation activity of TGs is latent [9,10], while other activities, 
recently identiϐied, could be present. For example, in some physiological states, when 
the concentration of Ca2+ increases, the crosslinking activity of TGs may contribute to 
important biological processes. As previously described, one of the most intriguing 
properties of some TGs, such as TG2, is the ability to bind and hydrolyze GTP and 
furthermore, to bind to GTP and Ca2+. GTP and Ca2+ regulate its enzymatic activities, 
including protein cross-linking, in a reciprocal manner: the binding of Ca2+ inhibits 
GTP-binding and GTP-binding inhibits the transglutaminase cross-linking activity 
of the TG2 [5]. Interestingly, TG2 shows no sequence homology with heterotrimeric 
or low-molecular-weight G-proteins, but there is evidence that TG2 (TG2/Ghα) is 
involved in signal transduction, and, therefore, TG2/Ghα should also be classiϐied as 
a large molecular weight G-protein. Other studies, along with ours, showed that TG2/
Ghα can mediate the activation of phospholipase C (PLC) by the α1b-adrenergic receptor 
[10] and can modulate adenylyl cyclase activity [11]. TG2/Ghα can also mediate the 
activation of the δ1 isoform of PLC and of maxi-K channels [12]. Interestingly, the 
signaling function of TG2/Ghα is preserved even with the mutagenic inactivation of its 
crosslinking activity by the mutation of the active site cysteine residue [13]. 

MOLECULAR BIOLOGY OF THE TRANSGLUTAMINASES

To date at least eight different TGs, distributed in the human body, have been identiϐied
 (Table 1) [14-19]. Complex gene expression mechanisms regulate the physiological 
roles that these enzymes play in both the intracellular and extracellular compartments. 
In the Nervous System, for example, several forms of TGs are simultaneously expressed 
[20-22]. Moreover, in these last years, several alternative splice variants of TGs, mostly in 
the 3’-end region, have been identiϐied [23]. Interestingly, some of them are differently 
expressed in human pathologies, such as Alzheimer’s disease (AD) [24]. On the basis 
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of their ubiquitous expression and their biological roles, we may speculate that the 
absence of these enzymes would be lethal. However, this does not always seem to be the 
case, since, for example, null mutants of the TG2 are usually phenotypically normal at 
birth [12,25,26]. This result may be explained by the expression of other TG genes that 
may substitute the TG2 missing isoform, although other TG isoform mutations have 
been associated with severe phenotypes, such as lamellar ichthyosis for TG1 isoform 
mutations. Bioinformatic studies have shown that the primary structures of human 
TGs share some identities in only few regions, such as the active site and the calcium 
binding regions. However, high sequence conservation and, therefore, a high degree 
of preservation of secondary structure among TG2, TG3 and FXIIIa indicate that these 
TGs all share four-domain tertiary structures which could be similar to those of other 
TGs [27].

ROLE OF THE TRANSGLUTAMINASES IN NEURODEGENERATIVE 
DISEASES

Although numerous scientiϐic reports suggest that the transglutaminase activity 
is involved in the pathogenesis of neurodegenerative diseases, to date, however, 
still controversial experimental ϐindings about the role of the TGs enzymes in these 
diseases have been obtained [28-30]. Protein aggregates in affected brain regions are 
histopathological hallmarks of many neurodegenerative diseases [31]. More than 20 
years ago Selkoe et al. [32], suggested that TG activity might contribute to the formation 
of protein aggregates in AD brain. In support of this hypothesis, tau protein has been 
shown to be an excellent in vitro substrate of TGs [33,34] and GGEL cross-links have 
been found in the neuroϐibrillary tangles and paired helical ϐilaments of AD brains 
[35]. Interestingly, a recent work showed the presence of bis γ-glutamyl putrescine 
in human CSF, which was increased in Huntington’s disease (HD) CSF [36]. This is an 
important evidence that protein/peptides crosslinking by polyamines does indeed 
occur in the brain, and that this is increased in HD brain. TG activity has been shown 
to induce also amyloid β-protein oligomerization [37] and aggregation at physiologic 
levels [38]. By these molecular mechanisms, TGs could contribute to AD symptoms and 
progression [38]. Moreover, there is evidence that TGs also contribute to the formation 
of proteinaceous deposits in Parkinson’s disease (PD) [39,40], in supranuclear palsy 
[41,42] and in HD, a neurodegenerative disease caused by a CAG expansion in the 
affected gene [43]. For example, expanded polyglutamine domains have been reported 
to be substrates of TG2 [44-46] and therefore aberrant TG activity could contribute to 
CAG-expansion diseases, including HD (Figure 3). However, although all these studies 

Table 1: TGs and their physiological roles when known.

TG Physiological role Gene map location Reference

Factor XIIIa Blood clotting 6p24-25 [14]

TG 1 Skin differentiation 14q11.2 [15]

(Keratinocyte TG, kTG)
TG 2

Apoptosis, cell 20q11-12 [16]

(Tissue TG, tTG, cTG)
adhesion, signal

transduction

TG 3 Hair follicle 20p11.2 [17]

(Epidermal TG, eTG) Differentiation

TG 4 Suppression of sperm 3q21-2 [18]

(Prostate TG, pTG) Immunogenicity

TG 5 (TG X)
Epidermal

differentiation 15q15.2 [19]

TG 6 (TG Y)
Central Nervous System

Development
20p13 [19]

TG 7 (TG Z) Unknown function 15q15.2 [19]
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suggest the possible involvement of the TGs in the formation of deposits of protein 
aggregates in neurodegenerative diseases, they do not indicate whether aberrant 
TG activity per se directly determines the disease progression. For example, several 
experimental ϐindings reported that TG2 activity in vitro leads to the formation of 
soluble aggregates of α-synuclein [47] or polyQ proteins [48,49]. To date, as previously 
reported, at least ten human CAG-expansion diseases have been described (Table 2) 
[50-59] and in at least eight of them their neuropathology is caused by the expansion 
in the number of residues in the polyglutamine domain to a value beyond [35-40]. 

Figure 3: Possible physiopathological effects of the mutated huntingtin. Some of the physiopathological roles of 
mutated huntingtin, including the formation of nuclear inclusions, have been described in the Figure AP2=adipocyte 
Protein 2; BAX=bcl-2-like protein 4; BDNF=brain-derived neurotrophic factor; CALM= calmodulin; CASP=caspases; 
CASP3=caspase 3; CASP8=caspase 8; CBP= CREB binding protein; CBS = cystathionine-β-synthase; DCTN1 = 
dynactin subunit 1; GAPD=glyceraldehyde-3-phosphate dehydrogenase; GRB2=growth factor receptor-bound 
protein 2; HAP1=huntingtin associated protein 1; HIP1=huntingtin interacting protein 1; HIP2=huntingtin interacting 
protein 2; Hippi ; HIP1 protein interactor; NCOR1=nuclear receptor corepressor 1; RasGAP=p21Ras protein and 
GTPase-activating protein complex; TGs=transglutaminases; TP53=tumor protein 53.

Table 2: List of polyglutamine (CAG-expansion) diseases.

Disease Sites of neuropathology CAG triplet 
number

Gene product (Intracellular 
localization of protein 
deposits)

Reference

Normal Disease
Corea Major or Huntington’s 
Disease (HD)

Striatum (medium spiny 
neurons) and cortex in 
late  stage

6–35 36–121 Huntingtin(n,c) [50]

Spinocerebellar Ataxia Type 
1 (SCA1)

Cerebellar cortex (Purkinje 
cells), dentate nucleus 
and brain stem

6–39 40–81 Ataxin-1(n,c) [51]

Spinocerebellar Ataxia Type 
2 (SCA2)

Cerebellum, pontine 
nuclei, substantia nigra 15–29 35–64 Ataxin–2 (c) [52]

Spinocerebellar Ataxia 
Type 3 (SCA3) or Machado-
Joseph disease (MJD)

Substantia nigra, globus 
pallidus, pontine nucleus, 
cerebellar cortex

13–42 61–84 Ataxin –3 (c) [53]

Spinocerebellar Ataxia Type 
6 (SCA6)

Cerebellar and mild 
brainstem atrophy 4–18 21–30 Calcium channel Subunit (α 

1A)(m) [54]

Spinocerebellar Ataxia Type 
7 (SCA7)

Photoreceptor and bipolar 
cells, cerebellar cortex, 
brainstem

7–17 37–130 Ataxin-7 (n) [55]

Spinocerebellar Ataxia Type 
12 (SCA12)

Cortical, cerebellar 
atrophy 7–32 41–78

Brain specifi c regulatory 
subunit of protein phosphatase 
PP2A (?)

[56]

Spinocerebellar Ataxia Type 
17 (SCA17)

Gliosis and neuronal loss 
in the Purkinje cell layer 29–42 46–63 TATA-binding protein (TBP) (n) [57]

Spinobulbar Muscular 
Atrophy (SBMA) or Kennedy 
Disease

Motor neurons (anterior 
horn cells, bulbar neurons) 
and dorsal root ganglia

11–34 40–62 Androgen receptor (n, c) [58]

Dentatorubral-pallidoluysian 
Atrophy (DRPLA)

Globus pallidus, dentato-
rubral and subthalamic 
nucleus

7–35 49–88 Atrophin (n, c) [59]
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Remarkably, the mutated proteins have no obvious similarities except for the expanded 
polyglutamine domain. In fact, in all cases except SCA 12, the mutation occurs in the 
coding region of the gene. However, in SCA12, the CAG triplet expansion occurs in the 
untranslated region at the 5’ end of the PPP2R2B gene. It has been proposed that the 
toxicity results from overexpression of the brain speciϐic regulatory subunit of protein 
phosphatase PP2A [56]. Most of the mutated proteins are widely expressed both within 
the brain and elsewhere in the body. A major challenge then is to understand why 
the brain is primarily affected and why different regions within the brain are affected 
in the different CAG-expansion diseases, i.e., what accounts for the neurotoxic gain of 
function of each protein and for a selective vulnerability of each cell type. Possibly, 
the selective vulnerability [60] may be explained in part by the susceptibility of the 
expanded polyglutamine domains in the various CAG-expansion diseases to act as 
cosubstrates for a brain TG (Figure 4). To strengthen the possible central role of the 
TGs in neurodegenerative diseases, a study by Hadjivassiliou et al. [61], showed that 
anti-TG2 IgA antibodies are present in the gut and brain of patients with gluten ataxia, 
a non-genetic sporadic cerebellar ataxia, but not in ataxia control patients. Recently, 
anti-TG2, -TG3 and -TG6 antibodies have been found in sera from CD patients, 
suggesting a possible involvement also of other TGs in the pathogenesis of dermatitis 
herpetiformis and gluten ataxia, two frequent extra intestinal manifestations of gluten 
sensitivity [62,63]. These last ϐindings could suggest also a possible role of the “gut-
brain axe” for the etiopathogenesis of human neurodegenerative diseases, in which 
the TG enzymes, in particular the TG2 enzyme, could play an important role [64-66]. 

Figure 4: Possible mechanisms responsible for protein aggregate formation catalyzed by TGs. Transglutaminase 
activity could produce insoluble aggregates both by the formation of Nε-(γ-L-glutamyl)-L-lysine (GGEL) isopeptide 
bonds (left side of the fi gure) and by the formation of N,N-bis-(γ-L-glutamyl)polyamine bridges (right side of the 
fi gure) in the mutated huntingtin.
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In support of the hypothesis of the toxic effect of TG activity in 
other neurodegenerative diseases, such as Alzheimer’s disease and 
Parkinson’s disease, TG activity has been shown to induce amyloid beta-
protein and α-synuclein oligomerization and aggregation at physiologic
levels [67-69]. In fact, TG activity induces protoϐibril-like amyloid beta-protein 
assemblies that are protease-resistant and inhibit long-term potentiation [38]. 
Therefore, by these molecular mechanisms, TG activity could also contribute to 
Alzheimer’s disease symptoms and progression. Very recently, TG2 and its product 
isope ptide have been found increased in Alzheimer’s disease and APPswe/PS1dE9 
double transgenic mice brains [70], while catalytically active TG2 colocalizes with 
Aβ pathology in Alzheimer’s disease mouse models [71]. Interestingly, other works 
are suggesting that also other TGs could be involved in the molecular mechanisms 
responsible for neurodegenerative diseases [72]. In particular, a recent work by Basso 
et al. [73], found that in addition to TG2, TG1 gene expression level is signiϐicantly 
induced following stroke in vivo or due to oxidative stress in vitro. Moreover, structurally 
diverse inhibitors, used at concentrations that inhibit TG1 and TG2 simultaneously, are 
neuroprotective. Together, these last studies suggested that multiple TG isoforms, not 
only TG2, participate in oxidative stress-induced cell death signalling, and that isoform 
nonselective inhibitors of TG will be most efϐicacious in combating oxidative death 
in neurological disorders. These are interesting and worthwhile studies, suggesting 
that multiple TG isoforms can participate in neuronal death processes. Therefore, all 
these studies suggest that the involvement of brain TGs could represent a common 
denominator in several neurological diseases, which can lead to the determination of 
pathophysiological consequences through different molecular mechanisms.

ROLE OF THE TRANSGLUTAMINASE ACTIVITY IN NEUROINFLAM-
MATION

Neuroinϐlammation plays an important role in various chronic neurodegenerative 
diseases, characterized also by the pathological accumulation of speciϐic protein 
aggregates. In particular, several of these proteins have been shown to be substrates 
of transglutaminases. Interestingly, it has recently been demonstrated that 
transglutaminase 2 (TG2) may also be involved in molecular mechanisms underlying 
inϐlammation. In the central nervous system, astrocytes and microglia are the cell 
types mainly involved in this inϐlammatory process. The transcription factor NF-
κB is considered the main regulator of inϐlammation and it is activated by a variety 
of stimuli including calcium inϐlux, oxidative stress and inϐlammatory cytokines. 
Recently, in addition to these stimuli, TG2 has been shown to activate NF-κB both via a 
canonical pathway [74] and via a non-canonical pathway [75]. On the other hand, NF-
κB regulatory response elements are present also in the Transglutaminase 2 promoter 
[76]. Under these conditions, the over-expression of TG2 results in the sustained 
activation of NF-κB. Several ϐindings emphasize the possible role of the TG2/NF-κB 
activation pathway in neurodegenerative diseases, including Alzheimer’s disease, 
Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Together, 
these evidences suggest that TG2 could play a role in neuroinϐlammation and could 
contribute to the production of compounds that are potentially deleterious to neuronal 
cells [77].

TRANSGLUTAMINASE INHIBITION AS POSSIBLE THERAPEUTICAL 
APPROACH

In consideration to the fact that up to now there have been no long-term effective 
treatments for the human neurodegenerative diseases previously reported, then the 
possibility that selective TG inhibitors may be of clinical beneϐit has been seriously 
considered. In this respect, some encouraging results have been obtained with TG 
inhibitors in preliminary studies with different biological models of CAG-expansion 
diseases. For example, cystamine (Figure 5) is a potent in vitro inhibitor of enzymes 
that require an unmodiϐied cysteine at the active site [78]. Inasmuch as TGs contain 
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a crucial active-site cysteine, cystamine has the potential to inhibit these enzymes 
by a sulϐide-disulϐide interchange reaction. A sulϐide-disulϐide interchange reaction 
results in the formation of cysteamine and a cysteamine-cysteine mixed disulϐide 
residue at the active site. Recent studies have shown that cystamine decreases the 
number of protein inclusions in transfected cells expressing the atrophin (DRPLA) 
protein containing a pathological-length polyglutamine domain [79]. In other 
studies, cystamine administration to HD-transgenic mice resulted in an increase 
in life expectancy and amelioration of neurological symptoms [80,81]. Neuronal 
inclusions were decreased in one of these studies [81]. Although all these scientiϐic 
reports seem to support the hypothesis of a direct role of transglutaminase activity 
in the pathogenesis of the polyglutamine diseases, cystamine is also found to act in 
the HD-transgenic mice by mechanisms other than the inhibition of TGs, such as the 
inhibition of caspases [82], suggesting that this compound can have an additive effect 
in the therapy of HD. Currently, cysteamine is already in phase I studies in humans 
with HD [83], but several side effects, such as nausea, motor impairment and dosing 
schedule have been reported as reasons for non-adherence during phase II studies in 
human patients affected by cystinosis [84,85]. Another critical problem in the use of 
TG inhibitors in treating neurological diseases relates to the fact that, as previously 
reported, the human brain contains at least four TGs, including TG1,2,3 [22] and 
TG6 [86], and a strong non-selective inhibitor of TGs might also inhibit plasma Factor 
XIIIa, causing a bleeding disorder. Therefore, from a number of standpoints it would 
seem that a selective inhibitor, which discriminates between TGs, would be preferable 
to an indiscriminate TG inhibitor. In fact, although most of the TG activity in mouse 
brain, at least as assessed by an assay that measures the incorporation of radioactive 
putrescine (amine donor) into N,N-dimethyl casein (amine acceptor), seems to be due 
to TG2 [87], no conclusive data have been obtained by TG2 gene knock-out experiments 
about the involvement of this TG in the development of the symptoms in HD-transgenic 
mice [26,88,89]. Moreover, a recent scientiϐic report showed that cystamine reduces 
aggregate formation in a mouse model of oculopharyngeal muscular dystrophy 
(OMPD), in which also the TG2 knockdown is capable of suppressing the aggregation 
and the toxicity of the mutant protein PABPN1 [90], suggesting this compound as a 
possible therapeutic for OMPD.

CONCLUSION

Numerous scientiϐic reports have implicated aberrant TG activity in 
neurodegenerative diseases, but still today we are looking for experimental ϐindings 
which could deϐinitely conϐirm the direct involvement of TGs in the pathogenetic 
mechanisms responsible for these diseases. However, as result of the putative role of 
speciϐic TG isoforms, such as TG2, in some human diseases, there is a considerable interest 
in developing inhibitors of these enzymes. Of those currently available, cystamine is the 
most commonly used experimentally to inhibit TG2 activity. In addition to cystamine, 
several types of TG2 inhibitors have been developed up to now [91]. Interestingly, 
some of these inhibitors have shown promising results in experimental diabetic 
models [92]. Therefore, the use of these inhibitors of TGs could be then useful also 
for other clinical approaches. To minimize the possible side effects, however, more 
selective inhibitors of the TGs should be required in the future. Progress in this area 
of research could be achieved, if possible, also through pharmaco-genetic approaches.

Figure 5: Chemical structure of cystamine.
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